Update on cooling and mechanics of the luminosity detector

Heinrich Leithoff

Helmholtz Institut Mainz

PANDA-Collaboration-Meeting Darmstadt March 7, 2018

Helmholtz Institute Mainz

Overview

- 4 layers of active pixel sensors in vacuum
- cooling system of the luminosity detector
- mechanical structure

Modules

- Changes: Sensors are bigger (20*mm* × 23*mm* instead of 20*mm* × 20*mm*)
 - \longrightarrow only 8 sensors per diamond
- sensors glued to diamond wafer
- shown sensor positions worst case for cooling

Cooling support with sensors

- diamond wafers clamped in cooling structure
- requirement: Good thermal conducting contact between cooling pipe and aluminum
 - \rightarrow Embedding the pipe in molten aluminum

Half detector prototype

- production of halfplanes is finished
- First full half detector under preparation for testing

Cooling system: General setup

	sensors	LDO Voltage	resistance in	Multiplexer
		regulator	flexcables	etc.
worst case	1120 W	320W	160W	$\sim \! 100 W$
likely case	370 W	110W	20W	${\sim}100 {\sf W}$

Total estimated heat load per half detector: ${\sim}1~\text{kW}\sim\!350~\text{W}$ No huge changes between old and new design

Temperature distribution

- heatload per diamond almost identical
- distribution very similar
- new design calculated for worst case sensor placement
- does not include transition effects from diamond to aluminium

Temperature along tracks parallel to beam varies ${\sim}1^\circ\text{C}$ FEM-simulation done with Autodesk Simulation CFD 2013 and CFD 2017

Temperature measurements

- measurement with half plane prototype
- measurement of transition effect on single module prototype
- good agreement between simulation and measurements

30

Temperature distribution 2

- expected case much colder
- adding expected transition effect gives $T_{max}\sim\!50^\circ{\rm C}$ and $T_{max}\sim\!5^\circ{\rm C}$
- lower temperature possible if needed

FEM-simulation done with Autodesk Simulation CFD 2017

Mechanical setup old

Old vacuum box with several problems:

- not stiff enough (displacement ~ 1 mm by vacuum)
- inside too small (detector bigger than expected)
- mounting & connecting the detector in the box tricky (no space)

Mechanical setup new

New design adresses these problems:

- much stiffer (displacement <0.2 mm by vacuum)
- more space inside
- symmetric design

Mechanical setup new

- mounting & connecting happens outside of box
 → easier access to cables & connectors
- drawback: positioning relative to the box more challenging
- precise measurements needed

Summary and outlook

- production of half planes finished
- half plane prototype successfully tested
- new design vacuum box produced

What is next:

- extended test of new vacuum box
- test of half detector prototype
- cooling test starting in the next weeks
- production of final detector

Aluminum steel contact after cooling

after cutting:

after cooling to -40° C:

No gap between the materials, very good contact

Comparison of materials and processes

Test of the aluminum-diamond contact

- Setup with copper dummy
- Comparison of FEM results with measurements
- Test and comparison of several contact materials

FEM-simulation and measurement

- Simulated temperature difference $\sim 55^\circ C$
- Measured temperature difference (two Pt100): $50^{\circ}C$
- High radial temperature gradient (up to $2\frac{K}{mm}$)

$$\begin{array}{lll} \mbox{kein Material} & \mbox{Graphitfolie} & \mbox{PC93} \\ \sim 2, 2 \frac{{}^\circ {\it C}}{W} & \sim 0, 88 \frac{{}^\circ {\it C}}{W} & \sim 0, 72 \frac{{}^\circ {\it C}}{W} \end{array}$$

H. Leithoff (HIM)

Contact materials

H. Leithoff (HIM)

Contact materials 2

Upper limit for the material transition temperature rise:

Temperature Gradient

- Temperature gradient varies on the diamond
- High values near the cooling structure (> 1.5 $\frac{K}{mm}$)
- interesting measurements are in region with > 1 $\frac{K}{mm}$

Melting aluminum around stainless steel pipes

- Casting mould with stop off and cooling pipe
- The pipe can move in one direction to minimize internal stress

Casting mould after first melting process

- First test done under vacuum
- good results, but the vacuum furnace gets really dirty