Electronics

Christof Motzko on behalf of the PANDA Luminosity Detector Group

Helmholtz-Institut Mainz Johannes Gutenberg-Universität Mainz

March 07th, 2018

Luminosity Detector Overview

HV-MAPS

- High Volage Monolythic Active Pixel Sensor
- Under development (Mu3e group in Heidelberg)
- Standard CMOS production
- Digital part on chip
- High bias voltage increases S/N
- Pixel size: $80 \,\mu\mathrm{m} imes 80 \,\mu\mathrm{m}$
- Thikness: \sim 50 μ m
- Dimensions: $\sim 2 \times 2.3 \text{ cm}^2$ Prototype: $1.08 \times 1.95 \text{ cm}^2$
- Expected power consumption < 300 mW/cm²

MuPix prototype $3 \times 4 \text{ mm}^2$

Arrangement of HV-MAPS

320 sensors (50 $\mu \rm m$ thick) glued on 40 CVD diamond wafers

- 4 planes with 10 modules
- Full azimuthal range

Advantages of CVD diamond:

- very high thermal conductivity
- very hard material
 - \Rightarrow very thin supply structure (200 μ m)

Signal Routing

Connection of HV-MAPS

- Characteristics:
 - Trace material: aluminum
 - Trace width: $> 100 \ \mu {
 m m}$
 - Trace thickness: 14 μm
 - Cable thickness: pprox 60 μ m
 - Pads for wire bonding

- Advantage of aluminum: Short radiation length \rightarrow Average X/X₀ = 0.32 %
- Disadvantage of aluminum: High electrical resistance
 - ightarrow voltage drop
 - \rightarrow high power dissipation

Connection of HV-MAPS

- Characteristics:
 - Trace material: aluminum
 - Trace width: $> 100 \, \mu {
 m m}$
 - Trace thickness: 14 μm
 - Cable thickness: pprox 60 μ m
 - Pads for wire bonding

- Advantage of aluminum: Short radiation length \rightarrow Average X/X₀ = 0.32 %
- Disadvantage of aluminum: High electrical resistance
 - ightarrow voltage drop
 - \rightarrow high power dissipation

Flex Cable for Prototype Sensor

Changes:

- Trace width: > 80 μ m
- Cable thickness: $pprox 100\,\mu{
 m m}$
- Pads for TAB bonding
- Switch of bottom and top layer
- Cable consist of 3 parts

Supply Board

- PCB on both sides of the half plane
- Power dissipating components attached to the surface
- Radiation tests with electronic parts were made at COSY

Expected radiation dose: $< 0.1 \, \text{kGy}$

5 kGy, 30 MeV protons				
type	part number	# irradiated	# broken	
LDO regulator	MCP1727	9	0	
	ADM7172	9	9	
LVDS repeater	DS25BR100	8	0	
clock driver	ADCLK846	8	0	

$1.5\,kGy,\ 2.9\,GeV$ protons

type	part number	# irradiated	# broken
LDO regulator	MCP1727	10	0
	ADP1740	15	8
LVDS repeater	DS25BR440	4	2
clock driver	MAX 9153	6	0
micro controller	AT90CAN128	3	0
	·		·

Rigid Flex Cable

- Dimensions:
 83 mm × 569 mm
- FFC connector outside of the box
- Three layers for flex area:
 - 40 differential pairs (signal, clock, ...)
 - High voltage
 - pprox 500 μ m thick
- Rigid area:
 - Connector for LV
 - High density, high power connector to half plane

Temperature sensors

- Temperature measurement inside of the detector necessary
- 88 temperature sensors (PT100) foreseen:
 - 40 temperature sensors (on the diamonds) for monitoring
 - 48 temperature sensors (on the halfplanes and PCB) for overheating protection
 - ightarrow 352 wires
- Maybe NTC Thermistors on the HV-MAPS
- Patch panel to combine single wires to a FPC

Voltage

Low voltage

- HV-MAPS need 1.8 V (< 1.6 A)
- Voltage drop on flex cable up to 0.2 V \rightarrow LDO regulator with sense pin necessary
- Use of MCP1727
 - Regulation: < 330 mV
 - I_{Out} < 1.5 A
 - Dimensions: 3 mm imes 3 mm
- Power supply: Wiener PL506 with MEH-02/07
 - Up to 115 A per channel
 - Master-Slave mode for paralleling of channels
 - Noise and ripple (datasheet): < 10 mV
- Use of a current bar in the detector to split the LV to the PCBs

High Voltage

- HV-MAPS need high voltage (> 60 V)
- Combine 5 sensors with one HV channel
- Power supply: ISEG EHS F205p-F
 - U < 500 V
 - 16 channels per module

Conclusion

- New design of flex cables in work
- Estimated voltage drop for the LV up to 0.2 V \rightarrow Use of LDO regulator with sense pin
- Radiation test of electronic components are done
- Use of flex cables glued in feedthroughs

To Do

Test of the flex cables Glueing test of the rigid flex cables Design and test of the half plane pcb