

Development and first measurements of a 4-rod-RFQ with dipole compensation

K. Kümpel¹, H. Podlech¹, C. Zhang², A. Bechtold³, C.Lenz¹, N. Petry¹,

LINAC AG

¹Institut für Angewandte Physik Universität, Frankfurt am Main ²GSI Helmholzzentrum, Darmstadt ³NTG Neue Technologien GmbH und Co KG, Gelnhausen

May 17th 2018

The MYRRHA Project

particles	protons	N/A
energy	600	MeV
current	4	mA
beam power	2.4	MW
duty factor	100	%
beam stability	energy ±1%, current ±2% position ±10%, size ±10%	N/A
MTBF	250	h

The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) Project is a planned accelerator driven system (ADS) which aims to demonstrate the feasibility of large scale transmutation.

"...number of beam trips longer than 3 s remains under 10 during a 3-months operational period of the Myrrha reactor..." [1]

- use of components far from their limits
- redundancy (parallel, serial)

· repairability

[1] D. Vandeplassche, J.-L. Biarrotte, H. Klein, H. Podlech, "The MYRRHA Linear Accelerator", in *Proc. 2nd International Particle Accelerator Conf.* (*IPAC11*), San Sebastian, Spain, Sep. 2011, paper WEPS090, pp. 2718-2720

The MYRRHA Project

- Parallel redundancy in injector section
- Serial redundancy in sc section

Design philosophy: As conservative a necessary, as efficient as possible

0

The injectror at LLN

Parameter	MHYRRA	Unit
RF Structure	4.Rod	
Frequency	176.1	MHz
Beam current	4	mA
Duty factor	100	%
E _{in}	30	keV
E _{out}	1.5	MeV
RF Power	108	kW
Voltage	44	kV
Length	4	m

The Dipole Component

- The Dipole Component is a result of the different lengths of the current paths between the upper and the lower electrode.
- Leads to an asymmetrical field distribution

The Dipole Component

The Dipole Component is a result of the different lengths of the current paths between the upper and the lower electrode. Leads to:

- an asymmetrical field distribution
- a shift of the "ideal beam axis"

Dipole Compensation

- Stems have been widened alternately perpendicular to the beam direction
- This lengthens the current paths on the lower electrodes
- …and increases the voltage on the lower electrode

Dipole Compensation

NEXT GEN HIGH POWER CW-RFQ

keeps cool at even 130 kW/m (limit not yet reached)

Cooling System on Main Parts of the RFQ

Mechanical MYRRHA RFQ Design

- No. of stems: 40
- Distance of Stems: 100 mm
- No. of electrode sections: 3
- Pumping ports: 2 + 1 DN100CF
- Height of beam axis: 150 cm
- No. of tuner ports: 1 + 1
- Adjustable three-point-support

Construction of the electrodes

Assembly of the RFQ

Low Level RF Measurements

The first low level RF measurements (e.g. frequency and field flatness) have been performed at NTG.

Field Flatness

 $U \propto \sqrt{\Delta f}$

Field Flatness

Adjustment of the Tuning Plates

Adjustment of the Tuning Plates

Low Level RF measurements at IAP

Dipole measurement

Comparison of Measurement and Simulation

	FRANZ RFQ	MYRRHA RFQ
Simulation	22,6 %	-0,4 %
Messung	23,1 %	-4 %

$$U \propto \sqrt{\Delta f}$$

Comparison of Measurement and Simulation

- Vibrations of cardboard/aluminium foil lids
- Simulated tuning plates are on different positions compared to the tuning plates of the real RFQ
- Position of the dynamic tuner

Measurement of the unloaded Q-value

$$Q_0 = Q_L(1+\beta)$$

for $\beta = 1$

$$Q_0 = 2Q_L$$

 $Q_L(measured) \approx 2000$ $\rightarrow Q_0 \approx 4000$

Power Coupling

Measuring Setup for the High Power tests at IAP

Measuring Setup for the High Power tests at IAP

Measuring Setup for the High Power tests at IAP

Stems

Electrodes

Tuningplates

- More than 270 Connectors
- Stems: 40 entrances, 80 exits
- Elektroden: 36 entrances, 36 exits
- Tuningplatten: (39 + 2) entrances, (39 + 2) exits

Installation of the temperature sensors

Power tests Up to 10 W

Power tests Up to 3.5 kW

Last day of conditioning at IAP

Last day of conditioning at IAP

Kümpel

Next steps

- Shipping of the RFQ to LLN
- Adjustment of the Tuner Position
- High Power tests up to 108 kW
- BEAM !!!

Danke für Ihre Aufmerksamkeit!