

Cavity development and measurements on the cw heavy Ion LINAC@GSI

Institut für Angewandte Physik (IAP) Goethe-Universität Frankfurt am Main

Inhalt?

- Design of the cw heavy ion LINAC
- Development of CH1&2
 - Cavity parameter optimisation
 - Drift tube optimisation
 - Production Design
 - Frequency change through oversize erosion
- First intermediate measurements
 - Characterization of dynamic bellow tuners
 - Tuning stroke from static tuners
- Last measurements on factory side
 - Determine the length of power coupler and pickup
 - Measuring the pressure sensitivity of the cavity
 - Estimating the frequency change induced by thermal shrinking

Design of the cw heavy ion LINAC@GSI

- Basic design of CH1 and CH2 is used for all cavities up to CH11
- Each cryomodule contains 3 CH-cavities two solenoids and a buncher
- Acceleration for lons with A/q ≤ 6 with acceleration gradients up to 7.1 MV/m in each CH-cavity
- Maximum length of each cryomodule is 5 m
- Solenoids with B < 9T

Parameter	Unit	
β		0.069
Frequency	MHz	216.816
Cavity diameter	mm	407
Cavity length	mm	593
Aperture diameter	mm	30
Cell length	mm	47.7
Static tuner		At first 3 now 0
Dynamic bellow tuner		2
Accelerating gradient	MV/m	up to 7.1
E _P /E _a pessimistic		8.5
E _P /E _a optimistic		6.3
B _P /E _a pessimistic	mT/MV/m	<10
G	Ω	≈50
R_a/Q_0		≈1000

Markus Basten

GOETHE

UNIVERSITÄT

Electric peak fields

Electric peak fields

Drift tube optimisation

Electric field with and without drifttubes

Production Design

• flat parts in the cavity shell for constant welding depth

• static tuner withouth tunerhead for installation into closed cavity

Production Design

oversize of 5 mm on each side of the cavity

• oversize of 3 mm on the outer drifttubes in the first and last gap

Frequency change through oversize erosion

Intermediate measurements

Tuning stroke induced by trapezoidal thread spindle

Tuning stroke induced by trapezoidal thread spindle

- Δ f \approx -100 190 kHz/mm first cavity
- $\Delta f \approx -130$ kHz/mm simulated
- Δ f \approx -80 140 kHz/mm first cavity

Tuning stroke induced by tuner force

Tuning stroke induced by tuner force

- $\Delta x \approx 2.5 \pm 0.1 \ \mu m/N$ measured
- $\Delta x \approx$ -2,1 µm/N simulated
- Δ f ≈ -0,39 ± 0,01 kHz/N measured ≈ -156 ± 10,2 kHz/mm
- ∆ f ≈ -140 kHz/mm simulated
- Δ f \approx -183 ± 9 kHz/mm (spindle)

- $\Delta x \approx 3.2 \pm 0.4 \ \mu m/N$ measured
- $\Delta x \approx$ -2,1 µm/N simulated
- Δ f \approx -0,34 ± 0,04 kHz/N measured
 - ≈ -106 ± 25,7 kHz/mm
- Δ f \approx -130 kHz/mm simulated
- Δ f \approx -124 ± 8 kHz/mm (spindle)

Inner parts of the CH-cavity

Brass Dummy Tuner with mount

Measured and simulated tuning range

- Measured frequency 214,835
- 1,981 MHz until design frequency of 216,816 MHz
- After erosion of oversize and concerning the pressure sensitivity and thermal shrinking 1,76 MHz to design frequency

	simulated	measured	Measurements on CH 1 up to now
	[MHz]	[MHz]	
14.03.2017	218,118	217,416	1. Measurement done by RI with attached end caps, oversize and no static or dynamic tuners
10.04.2017	215,094	214,953	2. Measurement done by us with attached end caps, oversize and welded dynamic tuners
22.06.2017	215,026	214,835	3. Measurement done by RI right before welding the first end cap to the cavity body, oversize removed completely
13.07.2017	215,026	214,839	4. Measurement done by RI after welding both end caps to the cavity body
26.10.2017	215,252	215,144	5. Measurement done by RI after first 50 μ m BCP (Δ f = 317 kHz)
20.11.2017	215,478	215,454	6. Measurement done by RI after second 50 μ m BCP (Δ f = 311 kHz)
24.11.2017	215,704	215,779	7. Measurement done by RI after third 50 μ m BCP (Δ f = 325 kHz)
18.01.2018	215,704	215,887	8. Measurement done by us to determine pressure sensitivity, thermal shrinking and external Q-value

Last measurements before final BCP-treatment

Last measurements before final BCP-treatment

Copper-Couplers with variable lengths

External Q-value for power coupler

External Q-value for pickup

Pressure sensitivity CH 1

pressure / mbar

- approx. $\Delta f = +56,86 \pm 1 \text{ Hz/mbar}$ during evacuation
- approx. $\Delta f = +50,73 \pm 1,1 \text{ Hz/mbar}$ during ventilation
- change of ϵ_r should result in approx. $\Delta f = +63,6 \text{ kHz}$
- measured pressure sensitivity during evacuation approx. $\Delta f = -6,74 \pm 1$ Hz/mbar
- measured pressure sensitivity during ventilation approx. $\Delta f = -12,87 \pm 1,1 \text{ Hz/mbar}$
- simulated pressure sensitivity approx. $\Delta f = +4,61$ Hz/mbar

Measured deformation CH 1

³⁰ • measured deformation up to $\Delta x = 30 \ \mu m$

- simulated deformation up to $\Delta x = 65 \ \mu m$

Measured deformation CH 1

Measured deformation CH 1

Markus Basten

Accelerator Seminar GSI

First cold test to determine thermal shrinking

First cold test to determine thermal shrinking CH 1

First cold test to determine thermal shrinking CH 1

First cold test to determine thermal shrinking CH 1

- The frequency change at an average temperature of approx. 95 K was 293,5 kHz
- This is 34,37 kHz (approx. 13,3%) more than values from literature
- In consideration of these results we expect a frequency change of approx. +350 kHz at a temperature of 4 K

Final BCP-Treatment of CH 1

- If we consider all impacts on the frequency we are still approx. 524 kHz below the design frequency of 216,816 MHz 215,887 + 0,35 + 0,054 = 216,291 MHz
- This would mean we need another approx. 83 μm BCP which should be performed in two steps
- Due to technical failure of the BCP-system, the first BCP step resulted in a frequency change of approx. 438 kHz
- This would mean a BCP of approx. 70 μm instead of planned 45 μm
- To stay below the design frequency we decided to perform just a minimalistic BCP-treatment of 5 μm to reach the desired surface quality

	simulated	measured	Measurements on CH 1 up to now
	[MHz]	[MHz]	
14.03.2017	218,118	217,416	1. Measurement done by RI with attached end caps, oversize and no static or dynamic tuners
10.04.2017	215,094	214,953	2. Measurement done by us with attached end caps, oversize and welded dynamic tuners
22.06.2017	215,026	214,835	3. Measurement done by RI right before welding the first end cap to the cavity body, oversize removed completely
13.07.2017	215,026	214,839	4. Measurement done by RI after welding both end caps to the cavity body
26.10.2017	215,252	215,144	5. Measurement done by RI after first 50 μ m BCP (Δ f = 317 kHz)
20.11.2017	215,478	215,454	6. Measurement done by RI after second 50 μ m BCP (Δ f = 311 kHz)
24.11.2017	215,704	215,779	7. Measurement done by RI after third 50 μ m BCP (Δ f = 325 kHz)
18.01.2018	215,704	215,887	8. Measurement done by us to determine pressure sensitivity, thermal shrinking and external Q-value
22.02.2018	215,907	216,325	9. Measurement done by RI after fourth planned 45 μ m BCP, which turned out to be roughly 70 μ m (Δ f = 438 kHz)
06.03.2018	215,93	216,389	10. Measurement done by RI after last BCP of planned 5 μm, which was in reality roughly 10 μm (Δf = 64 kHz)
19.03.2018	215,87	216,419	11. Measurement done by me at IAP after delivery, ventilated with nitrogen

Measurements on CH 1 up to now

	simulated	measured	Measurements on CH 2 up to now
	[MHz]	[MHz]	
30.06.2017	215,094	214,686	1. Measurement done by us with attached end caps, oversize and welded dynamic tuners
05.09.2017	215,026	214,647	2. Measurement done by RI right before welding both end caps to the cavity body, oversize removed completely
21.09.2017	215,026	214,723	3. Measurement done by RI after welding both end caps to the cavity body
23.02.2018	215,026	214,72	4. Measurement done by RI after welding the flanges onto the cavity
22.03.2018	215,252	214,987	5. Measurement done by RI after first 50 μ m BCP (Δ f = 267 kHz)
28.03.2018	215,478	215,287	6. Measurement done by RI after second 50 μ m BCP (Δ f = 300 kHz)
11.04.2018	215,704	215,575	7. Measurement done by RI after second 50 μ m BCP (Δ f = 288 kHz)
18.04.2018	215,704	215,613	8. Measurement done by us to determine pressure sensitivity and thermal shrinking

Pressure sensitivity CH 2

- approx. $\Delta f = +55,52 \pm 0,5 \text{ Hz/mbar}^{\text{pressure /.mbar}}$ during evacuation
- approx. $\Delta f = +54,75 \pm 0,3 \text{ Hz/mbar}$ during ventilation
- change of ε_r should result in approx. $\Delta f = +63,6 \text{ kHz}$
- measured pressure sensitivity during evacuation approx. $\Delta f = -8,08 \pm 0,5 \text{ Hz/mbar}$
- measured pressure sensitivity during ventilation approx. $\Delta f = -8,85 \pm 0,3 \text{ Hz/mbar}$
- simulated pressure sensitivity approx. $\Delta f = +4,61$ Hz/mbar

- measured deformation evacuation $\Delta x \approx 45 \mu m$ • measured deformation ventilation $\Delta x \approx 48 \ \mu m$ 40 35 ventilation 30 Е 25 deformation / 20 15 10 5 evacuation 0 -5 500 1000 pressure / mbar
- simulated deformation up to $\Delta x = 50 \ \mu m$

40

35

30

deformation / µm 10 10

5

0

-5

0

Measured deformation CH 2

• measured deformation evacuation $\Delta x \approx 137 \,\mu m$

• simulated deformation up to $\Delta x = 100 \ \mu m$

CH 2 300 temperaturesensor 1 temperaturesensor 2 temperaturesensor 3 250 temperaturesensor 4 emperature / K temperaturesensor 5 200 150 100 50 500 1000 1500 2000 2500 3000 3500 0 time / sec

First cold test to determine thermal shrinking

Measurements on CH 2 up to now

Status of both CH-cavities

Measurement on factory site	CH1	CH2
Attached end caps, oversize and no tuners	\checkmark	
Attached end caps, oversize and dynamic tuners	\checkmark	\checkmark
Attached end caps, oversize removed before welding	\checkmark	\checkmark
After welding both end caps	\checkmark	\checkmark
After first 50 μm BCP	\checkmark	\checkmark
After second 50 μm BCP	\checkmark	\checkmark
After third 50 μm BCP	\checkmark	\checkmark
Before final BCP	\checkmark	\checkmark
After final BCP ventilated with nitrogen	\checkmark	Ţ

