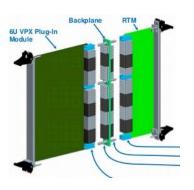
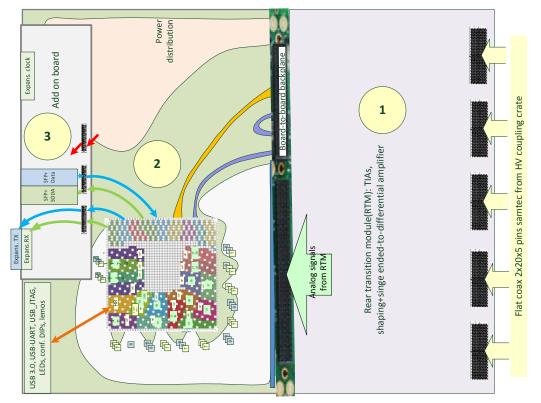


Status of ADC based DAQ-System

A. Erven, L. Jokhovets


STT Readout Meeting 7 February 2018


tglied der Helmholtz-Gemeinschaft

Crate and Board view

Status Crate

- OpenVPX-based crate from ELMA
- Modification of backplane for our needs

Received

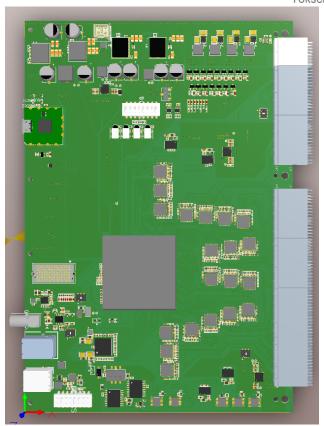
ylled der Helmholtz-Gemeinsch

Rear Transition Module

Received produced hardware from external provider

 Modification of hardware was required (problems with backplane connectors)

Power supply and amplifier stages under test in lab



Front Module

 Layout of board done (remember, very complex board with 160 differential input pairs and 320 differential pairs for ADC→FPGA with length compensation)

- PCB in production, delivery expected at 13.2.
- Board assembly will start immediately at ZEA-2, beginning with power supply

Outlook

- Several unexpected challenges, we worked hard on it,
 but we could not avoid delays
- Unrealistic to get a running hardware (tested in the lab, build up at COSY and tested with cosmics) within 12th March

→ decided to skip the tests in March and to be ready at the second week of beam time in April

Readout & DAQ

Configuration for beam test in 2018

- Time sorted and dedicated raw mode
- Running without controller
- Workstation will be used for controlling measurement and taking data
- Each module (160 channels) will have an uplink over USB 3.0 to workstation
- Data rates: max 300MB/s over USB3-link
- Modules are synchronized over backplane connection