

Status of Muon Chamber geometry @CBM

Ekata Nandy for the CBM collaboration **VECC, Kolkata**

CBM India Meeting 2018, Falta, 15-17 Feb

Collaborators Dr. Partha Pratim Bhaduri Dr. Anna Senger Omveer Chaudhury

Outline

- CBM Experimental setup.
- Muon detector system or Muon Chamber (MUCH).
- Different configurations of Muon Chamber
- Up gradation of Muon Chamber detector system and recent status MUCH geometry after Technical Design Report (TDR).
- To do list & summary.

CBM Experimental setup

⁻ Upcoming fixed target Experiment at FAIR where heavy ions will be collided at $E_{lab} = 4$ to 40 GeV/A.

- Maximum interaction rate at CBM ~ 10 MHz.
- will make possible the precise measurement of rare probes.

Muon Chamber design

Specifications

- Detector angular coverage 5.7° 25°
- Total absorber is sliced and detector chambers are placed in between absorbers.
- Distance between 2 absorbers is 30 cm,
 where 3 detector layers are placed with 10 cm
 distance between consecutive layer centers.
- MUCH cave starts at 125 cm from target.
- 1st absorber made of Graphite and rest are made of Iron.

Modifications after TDR

- Beam pipe design has been changed
- shift of the position of MUCH cave
- Absorbers design have been modified
- 1st absorber shape modified
- Magnet shielding bars have been removed
- Investigation on 2^{nd} station size have been done
- Investigation going on for 3rd & 4th station

Different configurations of MUCH

SIS100B (4 stations + 4 absorbers)

SIS100A (3 stations + 3 absorbers)

SIS100C (5 stations + 5 absorbers)

SIS300 (6 stations + 6 absorbers)

Thickness of absorbers as specified in TDR

CBM ROOT framework with FAIRSOFT & FAIRROOT

GEANT3 transport code

Event Generators : URQMD + PLUTO

URQMD – to generate background events

PLUTO – to generate dimuons from signal (ρ, ω , ϕ , J/Ψ –> μ+ μ-).

(a) Modifications of beam pipe & shielding

(b) Modification of Muon chamber design

Modified

Invariant Mass $M_{\mu+\mu}$

(c) Modification of shape of MUCH 1st absorber

Trapezoid Parallelopiped

(c) Modification of shape of MUCH 1st absorber

(d) Investigation on 2nd station size

R_{out} – R_{in} = 97 cm (default setup) = 90 cm (Modified setup) = 80 cm (Modified setup)

SIS100B (4 stations+ 4 absorbers)

SIS100C (5 stations + 5 absorbers)

ω@ 8 AGeV	Standard $R_{out} - R_{in}$ = 97 cm	$R_{out} - R_{in}$ = 90 cm	$R_{out} - R_{in}$ $= 80 \text{ cm}$
ω Efficienc y (%)	0.92	0.92	0.85
S/B	0.25	0.22	0.21

Ј/Ψ @ 25 AGeV	Standard SIS100C	$R_{out} - R_{in} =$ 90 cm
J/Ψ Efficiency (%)	4.90	4.81
S/B	5.66	5.96

(e) Investigation on 3rd & 4th station for using RPC

(e) Investigation on 3rd & 4th station for using RPC

For 3rd station 1 module size is 122 cm x 178 cm For 4th station 1 module size is 138 cm x 206 cm

To do list

- Beam pipe design is not yet realistic.
- Investigations on 2^{nd} station size has been done & nearly finalized.

– Suitable detector technology for $3^{rd} \& 4^{th}$ station have to be determined. RPC seems to be a possible option for that. R & D is going on for that.

- Implementation of proper geometry is needed for RPC.

- Whether strips or pads will be used that has to be decided.
- RPC digitization has to be implemented in simulation

- At the simulation level, performance needed to be checked with full implementation of detector response & tracking.

Thank You