Equilibrium thermodynamics in heavy ion collision experiment

Deeptak Biswas

CAPSS, Bose Institute

CBM-India Meeting, 2018

<u>Collaborators</u>: Sumana Bhattacharyya, Sanjay K. Ghosh, Rajarshi Ray, Pracheta Singha (manuscript under preparation)

Deeptak Biswas

ব া ১ ব টি ১ ব ট ১ ব ট ১ ট ত ও ে Equilibrium thermodynamics in heavy ion collision experiment

- 2 Modelling The Equilibrium
- Fitting Experimental Data
- 4 Equation Used For Fitting

イロン イヨン イヨン イヨン

Motivation for a new state of matter

• RHIC experiments \rightarrow free quarks, gluons

Deeptak Biswas Equilibrium thermodynamics in heavy ion collision experiment

イロン スポン イヨン イヨン

Motivation for a new state of matter

- RHIC experiments \rightarrow free quarks, gluons
- \bullet Frequent collision \rightarrow Thermalization

イロン イヨン イヨン イヨン

Motivation for a new state of matter

- RHIC experiments –> free quarks, gluons
- \bullet Frequent collision \rightarrow Thermalization
- Rapid expansion and T decreases

・ロト ・日本 ・モート ・モート

Motivation for a new state of matter

- RHIC experiments→free quarks, gluons
- \bullet Frequent collision \rightarrow Thermalization
- Rapid expansion and T decreases
- For $T < T_c \rightarrow$ Hadronization

イロト イヨト イヨト イヨト

Motivation for a new state of matter

- RHIC experiments→free quarks, gluons
- \bullet Frequent collision \rightarrow Thermalization
- Rapid expansion and T decreases
- For $T < T_c \rightarrow$ Hadronization
- Energetic hadrons→Inelastic collision

・ロト ・日本 ・モート ・モート

Motivation for a new state of matter

- RHIC experiments→free quarks, gluons
- \bullet Frequent collision \rightarrow Thermalization
- Rapid expansion and T decreases
- For $T < T_c \rightarrow$ Hadronization
- Energetic hadrons→Inelastic collision
- Further expansion→No inelastic collision

・ロト ・日本 ・モート ・モート

Motivation for a new state of matter

- RHIC experiments free quarks, gluons
- \bullet Frequent collision \rightarrow Thermalization
- Rapid expansion and T decreases
- For $T < T_c \rightarrow$ Hadronization
- Energetic hadrons→Inelastic collision
- Further expansion→No inelastic collision

イロト イポト イヨト イヨト

• Chemical composition becomes fixed

Motivation for a new state of matter

- RHIC experiments free quarks, gluons
- \bullet Frequent collision \rightarrow Thermalization
- Rapid expansion and T decreases
- For $T < T_c \rightarrow$ Hadronization
- Energetic hadrons→Inelastic collision
- Further expansion→No inelastic collision
- Chemical composition becomes fixed
- Chemical Freezeout (CFO)

- We can extract information about this last scattering surface (CFO) from experimentally detected hadron yield.
- A strongly interacting system in equilibrium can be described by thermodynamic parameters $T, \mu_Q, \mu_B, \mu_S.$
- Extracted T vs μ_B for various experiments is expected to carry information about the phase diagram.

Figure : T vs μ_B [1]

[1] Andronic et. al Nucl.Phys.A772:167-199:2006;

·<</th>
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·</th

Parameters and model for equilibrium

 \bullet One can model HRG like picture with T and $\mu{\rm 's}$ to understand CFO surface.

Deeptak Biswas Equilibrium thermodynamics in heavy ion collision experiment

イロン スポン イヨン イヨン

Parameters and model for equilibrium

- \bullet One can model HRG like picture with T and $\mu{\rm 's}$ to understand CFO surface.
- We can write density of *i*'th Hadron as,

$$\mathsf{n}_i = \frac{g_i}{(2\pi)^3} \int \frac{d^3p}{\gamma_S^{-j} \exp[(E_i - \mu_i)/T] \pm 1}.$$

• $\mu_i = B_i \mu_B + S_i \mu_S + Q_i \mu_Q$ is total chemical potential, g_i is the degeneracy factor.

・ロト ・日本 ・モート ・モート

Parameters and model for equilibrium

- \bullet One can model HRG like picture with ${\cal T}$ and $\mu{\rm 's}$ to understand CFO surface.
- We can write density of *i*'th Hadron as,

$$\mathsf{n}_i = \frac{g_i}{(2\pi)^3} \int \frac{d^3p}{\gamma_S^{-j} \exp[(E_i - \mu_i)/T] \pm 1}.$$

• $\mu_i = B_i \mu_B + S_i \mu_S + Q_i \mu_Q$ is total chemical potential, g_i is the degeneracy factor.

• An additional factor γ_{S} has been used to incorporate kaon's deviation from equilibrium.

• j = 1 for k^{\pm} . For other strange and non-strange particles j = 0.

Connection with observable

- We observe dN/dy in experiments.
- One can write dN = ndV

3

・ロン ・回 と ・ ヨン ・ ヨン

Connection with observable

- We observe dN/dy in experiments.
- One can write dN = ndV
- For i'th primary hadron's rapidity density,

$$\langle \frac{dN_i}{dy} \rangle = \frac{dV}{dy} n_i(T, \mu_Q, \mu_B, \mu_S, \gamma_S)$$

• For writing above equations we have assumed that thermodynamic parameters T, μ_Q, μ_B, μ_s and γ_S do not change within the mid-rapidity region.

・ロト ・日本 ・モート ・モート

Connection with observable

- We observe dN/dy in experiments.
- One can write dN = ndV
- For i'th primary hadron's rapidity density,

$$\langle \frac{dN_i}{dy} \rangle = \frac{dV}{dy} n_i(T, \mu_Q, \mu_B, \mu_S, \gamma_S)$$

• For writing above equations we have assumed that thermodynamic parameters T, μ_Q, μ_B, μ_s and γ_S do not change within the mid-rapidity region.

• Information of the volume can be avoided by constructing ratios out of yields i.e

$$\frac{dN_i/dy}{dN_j/dy} = \frac{n_i}{n_j}$$

Deeptak Biswas

Equilibrium thermodynamics in heavy ion collision experiment

(4月) (4日) (4日)

Extracting Parameter From Data

- Now we can try to fit the number density with experimental data for dN/dy.
- \bullet One can perform contemporary χ^2 minimization method with multiple ratios.
- We tried to fit constructed ratios numerically.
- We observed that extracted parameters were highly dependent on the ratios we choose.

イロン スポン イヨン イヨン

Extracting Parameter From Data

- Now we can try to fit the number density with experimental data for dN/dy.
- \bullet One can perform contemporary χ^2 minimization method with multiple ratios.
- We tried to fit constructed ratios numerically.
- We observed that extracted parameters were highly dependent on the ratios we choose.
- Is there an alternate way to extract model parameters?

イロン スポン イヨン イヨン

An Alternate Approach

• For each μ_{α} ($\alpha = B, Q, S$) ratio is defined as net charges to total charge.

3

Deeptak Biswas Equilibrium thermodynamics in heavy ion collision experiment

イロト イヨト イヨト イヨト

An Alternate Approach

• For each μ_{α} ($\alpha = B, Q, S$) ratio is defined as net charges to total charge.

$$\frac{\sum_{i} \alpha_{i} \mathbf{n}_{i}}{\sum_{i} \mid \alpha_{i} \mid \mathbf{n}_{i}} = \frac{\sum_{i} \alpha_{i} \frac{dN_{i}}{dY}}{\sum_{i} \mid \alpha_{i} \mid \frac{dN_{i}}{dY}}$$

• Here Q, B and S are the charge, baryonic and strange quantum number.

・ロト ・回ト ・ヨト ・ヨト

An Alternate Approach

• To extract T, we look at the antiparticles to particles ratio.

$$\frac{\sum_{particle} n_i}{\sum_{antiparticle} n_i} = \frac{\sum_{particle} \frac{dN_i}{dY}}{\sum_{antiparticle} \frac{dN_i}{dY}}$$

Deeptak Biswas Equilibrium thermodynamics in heavy ion collision experiment

イロン スポン イヨン イヨン

An Alternate Approach

• To extract T, we look at the antiparticles to particles ratio.

$$\frac{\sum_{particle} n_i}{\sum_{antiparticle} n_i} = \frac{\sum_{particle} \frac{dN_i}{dY}}{\sum_{antiparticle} \frac{dN_i}{dY}}$$

• For γ_S we take ratio of k^{\pm} to non-strange,

$$\frac{n_{k^+} + n_{k^-}}{\sum_{non-strange} n_i} = \frac{\frac{dN_{k^+}}{dY} + \frac{dN_{k^-}}{dY}}{\sum_{non-strange} \frac{dN_i}{dY}}$$

Deeptak Biswas Equilibrium thermo

ব া চ ব বি চ ব ই চ ব ই চ হ ত ও ্ Equilibrium thermodynamics in heavy ion collision experiment

Dataset Used

• We numerically solve these equations to extract all five equilibrium parameters.

æ

Deeptak Biswas Equilibrium thermodynamics in heavy ion collision experiment

・ロト ・回ト ・ヨト ・ヨト

Dataset Used

- We numerically solve these equations to extract all five equilibrium parameters.
- \bullet AGS (4.85 Gev), SPS, RHIC and LHC (2.76 TeV) data have been used.
- \bullet Study has been performed for mid-rapidity data of most central collision of these $\sqrt{S}.$

イロン スポン イヨン イヨン

Dataset Used

- We numerically solve these equations to extract all five equilibrium parameters.
- \bullet AGS (4.85 Gev), SPS, RHIC and LHC (2.76 TeV) data have been used.
- \bullet Study has been performed for mid-rapidity data of most central collision of these $\sqrt{S}.$

イロン スポン イヨン イヨン

Dataset Used

- We numerically solve these equations to extract all five equilibrium parameters.
- \bullet AGS (4.85 Gev), SPS, RHIC and LHC (2.76 TeV) data have been used.
- \bullet Study has been performed for mid-rapidity data of most central collision of these $\sqrt{S}.$
- We first used all mesons and baryons $(\pi^{\pm}, k^{\pm} \text{ and } p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi^{\pm})$ for fitting (Model I).

Dataset Used

- We numerically solve these equations to extract all five equilibrium parameters.
- \bullet AGS (4.85 Gev), SPS, RHIC and LHC (2.76 TeV) data have been used.
- \bullet Study has been performed for mid-rapidity data of most central collision of these $\sqrt{S}.$
- We first used all mesons and baryons $(\pi^{\pm}, k^{\pm} \text{ and } p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi^{\pm})$ for fitting (Model I).
- If the system achieves equilibrium for the larger section, that demands equilibrium for the smaller ensemble also.

イロン スポン イヨン イヨン

Dataset Used

- We numerically solve these equations to extract all five equilibrium parameters.
- \bullet AGS (4.85 Gev), SPS, RHIC and LHC (2.76 TeV) data have been used.

 \bullet Study has been performed for mid-rapidity data of most central collision of these $\sqrt{S}.$

• We first used all mesons and baryons $(\pi^{\pm}, k^{\pm} \text{ and } p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi^{\pm})$ for fitting (Model I).

• If the system achieves equilibrium for the larger section, that demands equilibrium for the smaller ensemble also.

• We investigated this for a smaller subsection, only for π^{\pm}, k^{\pm} and p, \bar{p} (Model II).

イロン 不同と 不同と 不同と

Dataset Used

- We numerically solve these equations to extract all five equilibrium parameters.
- \bullet AGS (4.85 Gev), SPS, RHIC and LHC (2.76 TeV) data have been used.

 \bullet Study has been performed for mid-rapidity data of most central collision of these $\sqrt{S}.$

• We first used all mesons and baryons $(\pi^{\pm}, k^{\pm} \text{ and } p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi^{\pm})$ for fitting (Model I).

• If the system achieves equilibrium for the larger section, that demands equilibrium for the smaller ensemble also.

• We investigated this for a smaller subsection, only for π^{\pm}, k^{\pm} and p, \bar{p} (Model II).

• We have not used Ω^{\pm} yield as it is not available for all \sqrt{S} .

Variation of T w.r.t \sqrt{S} in Model I and II

• There is a trend of saturation after $\sqrt{S} = 19.6 A GeV$.

• It approaches the flat region of the proposed phase diagram of hadron to QGP transition near $\mu_B = 0$.

Deeptak Biswas

Variation of μ w.r.t \sqrt{S} in Model I and II

• μ_B increases due to higher rate of baryon stopping in lower collision energy.

• The difference between μ_{α} 's decrease with increasing \sqrt{S} and converges to zero at very high \sqrt{S} .

• At low \sqrt{S} , μ_Q becomes negative though both μ_B and μ_S remain positive for all the values of \sqrt{S} .

Variation of T vs μ_B in Model I and II

Deeptak Biswas

Variation of π^-/π^+ and k^-/k^+ with \sqrt{S} in Model I and II

Figure : π^-/π^+ and k^-/k^+

Deeptak Biswas

Variation of kaon to pion ratio and γ_S w.r.t \sqrt{S}

Figure :
$$k^+/\pi^+$$
, k^-/π^- and γ_S

Deeptak Biswas

Variation of baryon to antibaryon ratio w.r.t \sqrt{S}

Figure : Variation of \bar{p}/p , $\bar{\Lambda}/\Lambda$ and Ξ^-/Ξ^+ with \sqrt{S}

\$}€

Deeptak Biswas Equilibrium thermodynamics in heavy ion collision experiment

・ロト ・日本 ・モート ・モート

Strange baryon to non-strange baryon ratio w.r.t \sqrt{S}

Deeptak Biswas

Variation of p/π^+ w.r.t \sqrt{S} in Model I and II

• Model II has predicted it better as it has only pion,kaon and proton under consideration.

• In some \sqrt{S} model I deviates from the experimental values.

Variation of Λ/π^- w.r.t \sqrt{S} in Model I and II

• There is a "horn" in Λ/π^- also. Model I has reproduced the pattern of the horn quite beautifully.

Deeptak Biswas

Summary

- A new mechanism for freeze out parameter extraction has been proposed rather than the standard χ^2 method.

3

Deeptak Biswas Equilibrium thermodynamics in heavy ion collision experiment

イロン イロン イヨン イヨン

Summary

- A new mechanism for freeze out parameter extraction has been proposed rather than the standard χ^2 method.

• The extracted parameters value are in good agreement with standard literature.

3

・ロン ・雪と ・ヨン ・ヨン

Summary

- A new mechanism for freeze out parameter extraction has been proposed rather than the standard χ^2 method.
- The extracted parameters value are in good agreement with standard literature.
- For massive strange baryons, cross ratios like Λ/p and Ξ^-/p thermally predicted ratios differ from experimental values.

イロン イヨン イヨン イヨン

Summary

- A new mechanism for freeze out parameter extraction has been proposed rather than the standard χ^2 method.
- The extracted parameters value are in good agreement with standard literature.
- For massive strange baryons, cross ratios like Λ/p and Ξ^-/p thermally predicted ratios differ from experimental values.
- For \sqrt{S} =4.30A*GeV* and below yield of \bar{p} and $\bar{\Lambda}$ is not available. With better yield of multistrange sector, this work can be extended to the lower \sqrt{S} .

イロン 不同と 不同と 不同と

æ

Deeptak Biswas