Testing of large size triple GEM detector with Pb+Pb collisions at CERN-SPS and GEM test at VECC

Ajit Kumar

VECC Kolkata

CBM-INDIA Meeting Feb 15-17, 2018 Falta, West Bengal INDIA

Date: 16/02/2018

Plan of the talk

- CBM experiment
- Motivation of test beam
- Schematic of experimental setup
- Data taking
- Straight line track fitting

GEM detector testing at VECC lab

- GEM detector integration with sts-XYTER
 - ---> Preliminary test
- Assembly and Testing of large size (Mv2a/b) with Fe⁵⁵ at VECC lab for mcbm experiment
- Efficiency measurement of 10x10 cm² triple GEM detector with beta source (Sr⁹⁰) at VECC
 - ---> Schematic, data analysis and results
- Testing 31x31 cm² triple GEM with independent power supply
 - ---> Schematic and results

SPS CERN 2016 test beam members

Ajit Kumar¹, A. K. Dubey¹, J. Saini¹, V. Singhal¹, V. Negi¹, S. Mandal¹, S. K. Prasad², D. Nag², C. Ghosh¹, S. Chattopadhyay¹

- Variable Energy Cyclotron Centre (VECC)
 Kolkata INDIA
- 2. Bose Institute, Kolkata, West Bengal 700009, INDIA

CBM experiment

Compressed Baryonic Matter (CBM) experiment is a fixed target heavy ion experiment

Aim is to measure dimuon arises from:

- 1. Low mass vector messons and
- 2. Charmonia

Trapezoidal shaped triple GEM chambers are being developed for dimuon measurement in CBM experiment.

Schematic of CBM-MUCH setup

Motivation

- In all the previous beam tests (before SPS CERN 2016) we tested our detector only with single particle beams where tiny area of the detector is illuminated with particle beam
- In Dec 2016 at SPS CERN, for the first time we tested with spray of particles originitating from the Pb+Pb collisions

Highlights:

- **1.** Testing the large size detectors with full coverage.
- **2.** New CBM readout chain (including AFCK, FLIB and FLES with new version of electronics (n-XYTER, rev-F).
- 3. Use of water cooling system for the first time
- 4. Tracking using hits in different GEM planes.

Two large size (Mv1C and Mv1V) and one small size (10 cm x 10 cm) detector were tested ...

- --- one assembled at RD51 lab CERN
- --- second one assembled at VECC(Thanks to CPDA lab)

Building first real size trapezoidal shaped triple GEM chamber at VECC (clean room of CPDA lab)

Experimental Setup at CERN SPS

TOF Detectors

1. Detector setup:

A diamond detector was placed just before the target.

Beam direction

Pb target
(1 mm)

GEM1

Scintillators

Indian RPC

2. Daq setup:

Data taking

Data Taking: Data were taken in 3 phases

Phase1: 13 AGeV/c, Pb beam, 1mm thickness Pb target-- Only one large size detector

Phase2: 30 AGeV/c, Pb beam, 1mm thickness Pb target-- Two large size detector

Phase3: 150 AGeV/c, Pb beam, 1mm thickness Pb target + extra Fe block were used as target to increase the ineraction rate -- Two large size detector + one small (10 cm x 10 cm)

-- we have used two large size triple GEM detectors and one 10 cm x 10 cm detector.

Drift side

Connector side

Spill Structure

Phase2, run43

FEB wise hit distribution plot with time

Spill Structure

For phase3, run148 HV GEM1=GEM2 = 3400V, GEM3 =3860V

- GEM2
- ♦ GEM3
- ♦ GEM1

Spill structure for all the three GEM planes.

Event Reconstruction

Algorithm:

- In Time Slice (size of time slice is 10 ms) ---> Diamond hit as well as GEMs hit
- --- we get the data in .tsa formate. We have to first convert to cbmroot format.
- --- Select the GEM hits which lies between two consecutive diamond hit (in time) => event
- --- This algorithm work if the diamond hits and GEM hits are time synchronised

X-Y Hit distribution plot

ADC histogram for GEM1 GEM2 and GEM3

ADC hist within time corr window for G1

ADC hist within time corr window for G3

ADC hist within time corr window for G2

Number of hit/event

ADC cut in each plane 50

Average number of hits/event in each plane

Adc cut	G1	G2	G3 (10 cm x 10 cm)
0	25.02	35.98	4.9
30	24.77	35.41	4.87
50	24.55	35.14	4.83
80	22.86	34.79	4.62
100	21.36	33.71	4.48
150	18.67	32.03	4.24
200	17.04	30.49	4.09

Average number of hit per event for three different GEM plane at various baseline ADC substracted cut.

X-Y and η-φ plot

X-Y Plot

Straight line tracking algorithm

N+1 measuring detetectors at $z_0,...,z_n,...,z_N$ a particle crossing the detectors

N+1 coordinate measurements $y_0,...,y_n,...,y_N$ each measurement affected by uncorrelated errors $\sigma_0, \dots, \sigma_n, \dots, \sigma_N$

Find the best line y = a + b z that fit the track

$$\chi^{2} = \sum_{n=0}^{N} \frac{(y_{n} - a - bz_{n})^{2}}{\sigma_{n}^{2}}$$

The solution is found by minimizing the χ^2

$$a = (S_y S_{zz} - S_z S_{zy})/D$$
$$b = (S_1 S_{zy} - S_z S_y)/D$$

Similarly for the x-cordinate.

$$S_1 = \sum_{n=0}^{N} \frac{1}{\sigma_n^2}$$

$$S_z = \sum_{n=0}^{N} \frac{z_n}{\sigma_n^2}$$

$$S_{zz} = \sum_{n=0}^{N} \frac{z_n^2}{\sigma_n^2}$$
 $D = S_1 S_{zz} - S_z S_z$

$$S_1 = \sum_{n=0}^{N} \frac{1}{\sigma_n^2}$$
 $S_y = \sum_{n=0}^{N} \frac{y_n}{\sigma_n^2}$

$$S_z = \sum_{n=0}^{N} \frac{z_n}{\sigma_n^2} \qquad S_{yz} = \sum_{n=0}^{N} \frac{y_n z_n}{\sigma_n^2}$$

$$D = S_1 S_{zz} - S_z S_z$$

ADC cut:

GEM1: 50 adc channel

GEM2: 100 adc channel

GEM3: 100 adc channel

η-φ selection

η-φ cut for all planes

1.37<**n**<1.40

264<**φ**<266

Number of hit/event in each plane within given η - ϕ window

ADC cut:

GEM1: 50 adc channel

GEM2: 100 adc channel

GEM3: 100 adc channel

η-φ selection η-φ cut for all planes $1.37 < \eta < 1.40$ $264 < \phi < 266$

Residuals at origin (origin is not considered for chi2 minimization)

Residuals at GEM1 plane (GEM1 is not considered for chi2 minimization)

Detector integration with sts-XYTER

Without Source

With Source (Sr⁹⁰)

Picture of setup

Mv2a/b chamber assembly and testing with Fe⁵⁵ at VECC lab

Readout PCB

- --> ~2200 pad with gradually increasing sizes
- --> total front end board needed = 18

--> Active area

Dx1 = ~7.5 cm

Dx2 = ~40 cm

Dy = \sim 80 cm

Using NS-2 technique

Mv2a/b chamber testing

Source Pos = 11, HV = 4900V, Current = 757p2 micro amp

Source Pos = 15, HV = 4900V, Current = 757p2 micro amp

Mv2a/b chamber...

Mv2b GEM chamber test with Fe55 ADC channel vs HV

Pos = 11 ADC vs HV

Pos = 15 ADC vs HV

Mv2a/b chamber optocoupler test

 $HV = 4550VI = ~688 \mu A => noraml$

 $HV = 4550V I = 754 \mu A$ => short

 $HV = 4550V I = 688.8 \mu A$ => opt off for that segment

Image: http://www.sympnp.org/proceedings/61/G30.pdf

Efficiency measurement of 10x10 cm² triple GEM chamber with beta source at VECC lab

Efficiency measurement of triple GEM detector with beta source

For quality assurance in production of large size triple GEM detector

Schematic of experimental Setup

Picture of experimental Setup

Aux-Aux time correlation

1200 hAux1Aux0 Entries 2213 -3.924 Mean 1000 Std Dev 3.459 Number Of Entries 800 600 200 _q_00 -50 50 100 Time(ns)

Aux hit time correlation

Average number of coincidence count with varying thickness of material and at fixed CFD threshold..

Material	Thickness	Count (5min)	Count per minute
Nothing		~230446	~46089
GEM Detector(Kapton window)	2.5 cm	~4938	~986
Copper-clad(one side) G10	1.6 mm	~11200	2240
2 piece Copper- clad(one side) G10	(1.6+1.6) mm	~320	~63

Raw adc value within time correlation window

Variation of efficiency with high voltage (V)

 $Efficiency = \frac{Three fold count}{Two fold count}$

Variation of cluster size (# of strips) with high voltage (V)

Uniformity

Testing triple GEM chamber with independent power supply

Testing 31x31 cm² chamber with independent power supply

Schematic of experimental setup

Typical Fe⁵⁵ spectrum. Mean and sigma of the gaussin fit was used to calculate the resolution

Picture of experimental setup

Variation of peak adc channel and resolution with drift voltage

Keeping
$$V_{T1} = V_{T2} = 280V$$
, $V_{I} = 660V$, $V_{G1} = V_{G1} = V_{G1} = 370V$

Variation of peak adc channel and resolution with Induction voltage

Keeping
$$V_{T1} = V_{T2} = 280V, V_{D} = 680V, V_{G1} = V_{G1} = V_{G1} = 370V$$

Keeping

$$V_{D} = 680V, V_{I} = 660V, V_{G1} = V_{G1} = 370V$$

Variation of peak adc channel and resolution with transfer voltage

Both transfer voltage increases simultaneously

Upper triangle --> Top GEM Lower tringle --> Middle GEM Star --> Bottom GEM

Keeping

 $V_{D} = 680V, V_{1} = 660V, V_{T1} = V_{T2} = 280V$

Summary

- ◆ Tested two real size (Mv1V and Mv1C) and one small size (10 cm x 10 cm) triple GEM with Pb-Pb collision at CERN SPS
- Event reconstructed using consecuitive hits of diamond detector
- Straith line tracking fitting has been done
- Residuals were calculated by extrapolating the line at each plane
- ◆ Efficiency of the 10x10 cm² triple GEM measured using beta source and n-XYTER (self triggered electronics). Efficiency at different position of the chamber has been calculated
- ◆ Gain and energy resolution of triple GEM chamber has been tested using CAEN made independent power supply and Fe⁵⁵ source
- ◆ Two large size triple GEM detector (Mv2a and Mv2b) for mCBM experiment has been fabricated and tested with Fe55 in the VECC lab. Further testing is going under process
- ◆ Detector (10x10 cm²) integration with sts-XYTER has been done and beam spot using beta source has been seen. Further testing is under process.

To Do

- ◆ Clusterization of the detector hits. Then redo track fitting.
- Effect of absorber data on detector hits.
- ◆ Test beam simulation with segmented geometry => as the segmentation of singal module with any orientation has been done by Omveer Singh
- Efficiency measurement with β source for large size triple GEM module at VECC lab

Thank you for your kind attention

Backup slides

Number of diamond hits in each time slice

Average number of diamond per time slice ~ 34

- => roughly beam rate = 34/10ms
- => beam rate = ~3.4 kHz

Adc histogram for each plane within given η-φ window

Particle rate per event for one FEB in GEM2

FEB = 4edd_f2 Area ~ 59.49 cm2

Number of hit in above FEB with per event = -2

Number of hit per event per unit area = 2/59.5 = 0.034 hit/event*cm2

Similarly for GEM3

Area of GEM3 = $10 \text{ cm} \times 10 \text{ cm} = 100 \text{ sq. cm}$

Total hit in GEM3 per event = 3.7

So, 3.7/100 sq cm = 0.037/event*cm2

For 150 AGeV/c, run101 HV GEM1=GEM2 = 3200V, GEM3 =3610V

xy gem2 distribution of hits

Study regarding to low gain of Mv2a/b chamber

The possibilities of low gain can be:

- 1. One the GEM foil is not connected
 - --> a. Top foil disconnected from the resistive chain ==> no signal seen
 - --> b. Middle foil is disconnected from resisitive chain ==> no signal seen
 - --> c. Bottom foil is disconnected to from resisitive chain ==> signal seen from Sr90 but not with Fe55
- 2. Gain variation due to long and short track length
 - --> Short track has low gain and long track has high gain ==> But the gain varries within 10%
- 3. etc..

◆ Particle rate on detector for one FEB for GEM2 ~ 0.034hit/event*cm2 and for GEM3 ~0.037 hit/event*cm2 has been estimated

Mv2a/b chamber assembly and testing with Fe⁵⁵ at VECC lab

Motivation:

- 1. Triple GEM detector integration with sts-XYTER
 - --> With the old version of front end board

-->