

Development of MUCH Cooling system for mCBM

Chandrasekhar Ghosh EHEPAG, VECC

<u>Outline</u>

- Requirement of Cooling in mCBM
- Air cooling setup for mCBM
- Peltier Cooling test
- Rectangular Water Channel cooling for mCBM
- Mapping of MUCH PCB (MV2) for COSY Test Beam

Requirement of Cooling for mCBM MUCH FEB

- > One Trapezoidal MUCH consists of 18 no of FEBs.
- Each FEB deposits 2.5 Watt heat.
- Total heat load for each sector= 2.5 X18 W= 45 Watt.
- > We need to remove this heat continuously to keep all the FEBs below 25 °C

Chandrasekhar Ghosh

Cooling Plate arrangement at CERN SPS H4 Test Beam line

At CERN SPS H4 beam test during December 2016 two cooling plates were used

- One developed at Bose Institute*
- Other one developed at VECC Workshop

Both performed well to maintain the FEB temps below 25°C

*D. Nag et al, DAE Symp. on Nucl. Phys. 76 (2016).

16-02-2018

CBM Meet, Falta

Chandrasekhar Ghosh

Effect of Aluminium plate on momentum of primary and secondary particles at TOF :

Need to use minimum amount of Aluminium in MUCH coverage *Plot cour

*Plot courtesy: Omveer Singh, AMU

Air Cooling setup for mCBM

Component details:

No of Heating elements= 14 Resistance value= 10 Ohm Heat deposited by each= 2.5 Watt Temp sensor= DS18B20

FAN Details:

Operating Voltage: 12.6 Volt Airflow : 5.1 m³ /minute Rated Speed: 14900 rpm Lifetime: 70,000 hours continuous working

CBM Meet, Falta

Results of Cooling Expt with and without envelope

Results:

- 1. Without envelope case: within 5 mins the temp value comes within 25°C to 28°C.
- 2. With envelope case: within 10 mins temp value comes within 31°C to 34°C.
- 3. If we can make some proper airflow duct then cooling efficiency may get improved.

Engineering expertise needed

Peltier cooling on 2mm Aluminium plate

DATA SET 1 (R.T=23.5°C, R.H= 46%)

SENSOR No.	Before cooling stable temp(°C)	After peltier cooling stable temp(°C)	ΔT (°C)
Т3	35.50	30.50	5
Т8	31.75	24.00	7.75
T4	34.50	29.00	5.5
T1	36.50	32.00	4.5
T2	35.00	31.25	3.75
Т9	33.75	30.00	3.75

16-02-2018

Water Channel Cooling setup in VECC

No of Heating elements= 18 Heating applied= 2.5W X 18 = 45Watt Water Flow rate= 14 Lit/Hour Tin= 19° C Tout=22.75°C 16-02-2018

Results:

- All the dummy FEBs were placed on the channel
- Temp of all FEBs were well maintained around 20°C
- Flexible cable length from FEB to PCB connector increases more than 10 cm

Chandrasekhar Ghosh

Modification of Channel design in process

New Layout for rectangular water channel

Mapping of MUCH PCB (MV2) for COSY Testbeam

2DMapping

Conclusion:

- > An Air cooling setup has been demonstrated >>>> Need expertise to design a proper duct.
- > Peltier cooling was tested _____ No satisfactory result. Heat extraction issue from hot side.
- > Rectangular water channel cooling setup is being developed at VECC Workshop.

Thank You