Perspectives on strangeness physics with CBM

I.Vassiliev for the CBM Collaboration

- Physics case
- Developed methods & tasks
- High rate scenario
- Conclusions

November 2017 Turin

Physics case: Exploring the QCD phase diagram

LHC 🔊 Temperature T [MeV] 200 RHIC Quarks and Gluons universe SPS-CER Mitical point? CBM Hadrons 100 Color Superconductor? 0 Nuclei Net Baryon Density

Urleherschilde geschlictes M Bengt L. Friman Claudia Höhne Jörn E. Knoll Stefan K.K. Leupold Jorgen Randrup

Editors

The CBM Physics Book

Compressed Baryonic Matter in Laboratory Experiments

Projects to explore the QCD phase diagram at large μ_B: RHIC energy-scan, NA61@SPS, MPD@NICA: bulk observables CBM: bulk and rare observables, high statistic!

The equation-of-state at high ρ_B

- collective flow of hadrons
- particle production at threshold energies: open charm, multi-strange hyperons, HN

Deconfinement phase transition at high ρ_B • excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω) and charm (J/ ψ , ψ ', D⁰, D_s, D[±], Λ_c)

QCD critical endpoint

• excitation function of event-by-event fluctuations (\mathbf{K}/π , ... Ξ/π , Ω/π)

Onset of chiral symmetry restoration at high ρ_{B}

- in-medium modifications of hadrons (ρ, ω, ϕ)
- excitation function of **multi-strange** (anti)hyperons (PHSD 4.0)

Experiments exploring dense QCD matter

SIS-300: central Au + Au (UrQMD or PHSD) events

√s_{NN} [GeV]

dp/p = 1.2%

central: 82 (TF) + 16 (PF) ms/co mbias : 10 (TF) + 2 (PF) ms/co up to 80 cores/CPU

4

 $\sim 700 \pi$

160 p

53 K

32 Λ

 $27 K_{s}^{0}$

0.44 Ξ-

 $\sim 700 \pi$

174 p

42 K

30 A

 $24 K_{s}^{0}$

2.4 E⁻

0.005 Ω-

0.018 Ω-

Particle identification with PID detectors

Ni+Ni 15 AGeV

Central event: 40 (TF) + 7 (PF) ms/core with MVD! (~ 2 faster w/o MVD)

KF Particle Finder for the CBM Experiment

+ STAR, ALICE, PANDA, HADES, NA61

5M central AuAu collisions, 10AGeV

5M central Au Au collisions, 10AGeV (Λ)

5M central Au Au collisions, 10AGeV (Ξ -)

KF Particle Finder with ToF track ID: Au+Au @ 10AGeV

QGP and CSR signatures at FAIR energies: Multi-strange baryons and antibaryons

• Most of the Ω + produced by QGP @ FAIR energy

• CSR increase yield of MS Baryons & Antibaryons

central AuAu collisions, 10AGeV

(M)-S Baryons

PHS

central AuAu collisions, 10AGeV

PHSD 4.0 (CSR) 5M central Au +Au collisions, M³ (P. Kisel)

Au+Au 10 AGeV 5M central events

Extended KFParticle Finder ${}^{4}{}_{\Lambda}$ He

3 prong detached vertex is good signature of ${}^4_{\Lambda}$ He decay

M from J. Steinheimer et al., Phys. Lett. B714, 85, (2012)

5M mbias AuAu collisions, 10AGeV

DCM with CBM detector 5M mbias C + C collisions

A.S.Botvina, K.K.Gudima, J.Pochodzalla. Production of hypernuclei in peripheral relativistic ion collisions. Phys. Rev. C , v. 88, p. 054605, 2013.

DCM with CBM detector 5M mbias C + C collisions About 10 sec of data taking assuming 5*10⁵ IR

 Λ N, Λ NN, ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He

${}^{4}_{\Lambda\Lambda}$ H decay topology

 $^{4}_{\Lambda\Lambda}$ H decay reconstructed with CBM detector

⁶_{AA}He decay reconstructed with CBM detector 20

Double-A hypernuclei

- Background can be further reduced with additional dE/dx PID.
- For ⁵_AHe and ⁵_{AA}H background will be reduced selecting only primary hypernuclei.

AuAu, 10 AGeV, 1012 central events, TOF PID

High statistic measurements at 10^7 interaction rates will allow to measure double- Λ hypernuclei

Expected particle yields Au+Au @ 6, 10 AGeV

Particle (mass MeV/c ²)	Multi- plicity 6 AGeV	Multi- plicity 10 AGeV	decay mode	BR	ε (%)	yield (s ⁻¹) 6AGeV	yield (s ⁻¹) 10AGeV	yield in 10 weeks 6AGeV	yield in 10 weeks 10 AGeV	IR MHz
入 (1115)	4.6.10-4	0.034	pπ+	0.64	11	1.1	81.3	6.6·10 ⁶	2.2·10 ⁸	10
Ξ ⁻ (1321)	0.054	0.222	Λπ-	1	6	3.2·10 ³	1.3·10 ⁴	1.9·10 ¹⁰	7.8·10 ¹⁰	10
E⁺ (1321)	3.0.10-5	5.4·10 ⁻⁴	$\bar{\Lambda}\pi^+$	1	3.3	9.9·10 ⁻¹	17.8	5.9·10 ⁶	1.1.10 ⁸	10
Ω ⁻ (1672)	5.8.10-4	5.6·10 ⁻³	۸K⁻	0.68	5	17	164	1.0·10 ⁸	9.6·10 ⁸	10
Ω+ (1672)	-	7∙10 ⁻⁵	⊼K+	0.68	3	-	0.86	0	5.2·10 ⁶	10
³ _^ H (2993)	4.2.10-2	3.8·10 ⁻²	³ Heπ ⁻	0.25	19.2	2⋅10 ³	1.8·10 ³	1.2·10 ¹⁰	1.1.10 ¹⁰	10
⁴ _^ He (3930)	2.4.10-3	1.9·10 ⁻³	³ Hepπ ⁻	0.32	14.7	110	87	6.6·10 ⁸	5.2·10 ⁸	10
⁵ _{ΛΛ} He(5047)		5.0·10 ⁻⁶	³ He2p2π	0.01	1		5-10 ⁻³		3·10 ⁴	10
⁶ _{AA} He(5986)		1.0.10-7	⁴He2p2π	0.01	1		1.10-4		600	10

High rate scenario: MSH reconstruction with 4D tracking

V. Akishina

4D Track Finder in CBMROOT

100 AuAu 10 AGeV mbias events

Efficiency, %	3D	0.1 MHz	1MHz	10 MHz
All tracks	92.5%	93.8%	93.5%	91.7%
Primary high-p	98.3%	98.1%	97.9%	96.2%
Primary low-p	93.9%	95.4%	95.5%	94.3%
Secondary high-p	90.8%	94.6%	93.5%	90.2%
Secondary low-p	62.2%	68.5%	67.6%	64.3%
Clone level	0.6%	0.6%	0.6%	0.6%
Ghost level	1.8%	0.6%	0.6%	0.6%
True hits per track	92%	93%	93%	93%
Hits per MC track	7.0	7.0	6.97	6.70

Timeslices from CBMROOT Timebased digitisation, cluster and hit finder

High rate scenario: MSH reconstruction with 4D tracking

High rate scenario: MSH reconstruction with 4D tracking

High rate scenario: MSH reconstruction with 4D tracking

60 Institutes, 600 members

Summary:

CBM detector is an excellent device to measure not only bulk observables, but **strangeness**, **hypernuclei** and other rare probes with **high statistic**