
High-speed
concentration of
sorted data streams
for triggerless HEP
experiments
presented by: Marek Gumiński

With continuous particle flow, there is no external
trigger source, DAQ must be ready to accept data at
any time.

Readout data in triggerless experiments consists of
continuous stream of small (ie 32 bits) data
packets.

Typical data packet contain actual measurement
(ADC value) and its timestamp. Other information
may be also included.

Triggerless High Energy Physics experiments

In classical HEP experiments particles are grouped
into bunches, that collide at preset time. Data
acquisition may be triggered at that time.

Certain experiments benefit from continuous
particle flow resulting in “continuous” collision.

Data Acquisition

Efficient data processing requires readout data to
be encapsulated in packets containing entire data
from certain time period.

Online creation of time packets requires strictly
sorted data stream.

Each FEE sends data whenever it is acquired,
producing rising timestamp data stream.

Certain samples may be slightly out of order
(maximum disorder should be defined), but
generally timestamp is rising.

Data of certain timestamp may be shifted in
different FEE streams.

If FEE data streams are not sorted, it has to be done
before stream merging. Not included in this
presentation.

A0 A1 A3 A7
B0 B4 B7 B9

A0 B0 A1 A3 B4 A7 B7 B9

Merging

Buffer (with FIFOs) S inputs to account for shifts in
different data streams.

Select N oldest sample from all input data FIFOs.

Make sure that no FIFO is empty. New sample on
previously empty input may turn out to be older than
previously output.

Maximum stream bandwidth is equal to the number
of samples going through the pipeline in parallel
when all samples are valid (no empty samples).

Often pipeline has lower bandwidth than the
maximum possible (multiple empty cycles).

Maximum output FIFO bandwidth must be higher or
equal to the sum of input FIFO bandwidth.

FIFO

FIFO

FIFO

M
erger...

Number of input streams

As long as bandwidth condition is fulfilled, the
merger may have any number of inputs.

The more inputs, the more comparisons are
required to find the oldest sample.

In order to get highest bandwidth, binary tree of two
input mergers must be used.

Binary tree require more FIFOs (memory).

FIFO

FIFO

FIFO

M
erger...

FIFO

FIFO

M
erger

FIFO

FIFO

M
erger

FIFO

FIFO

M
erger

Bandwidth limitation

Maximum merger bandwidth

Until now mergers of N=1 were considered.

In order to increase bandwidth, clock frequency had
to be increased.

FPGA has clock frequency limitation, where register
setup and hold time requirements cannot be
fulfilled, causing latching incorrect values in
registers.

In practice it is difficult to drive programmable logic
blocks with clock frequency higher than 200 Mhz
(actual value depend on numerous factors).

When hardware clock frequency limit is reached,
increasing the number of output samples per clock
cycle is only way to increase merger bandwidth..

Multiple samples per clock cycle

In some cases merging require reading one sample
from each FIFO

In some cases merging require reading two
samples from one FIFO.

In FPGA FIFO may be implemented as block or
distributed memory.

It is possible to implement FIFO that allows
reading/writing a variable number of samples in
distributed memory, but their number is limited.

Block memory FIFOs may only be read/written with
predefined number of samples per clock cycle.

A1 A1
B0 B0 B0 B0

B0 B0 A1 A1

A0 A1
B0 B1 A0 B0

A0 B0 A1 B1

Proposed solution

Two word FIFOs are required.

Basic data buffering should be done in block
memory FIFOs.

Distributed FIFO between block FIFO, and actual
merger. Enables reading variable number of words.

Further investigation show that if FWFT block FIFO
is used, distributed FIFO may be reduced to a
register capable of storing single sample.

FIFO

FIFO

M
erger

buf

buf

FIFO

FIFO

M
erger

FIFO dist

FIFO dist

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 R =
F0 =
F1 =

F0 =
F1 =

Wait FIFO

B B0 R =
F0 =
F1 =

F0 =
F1 =

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 R =
F0 = A0
F1 = A2

F0 =
F1 =

Wait FIFO

B B0 B1 R =
F0 = B0
F1 = B1

F0 =
F1 =

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 R =
F0 = A0
F1 = A2

F0 = A0
F1 = A2

Read A,B

B B0 B1 R =
F0 = B0
F1 = B1

F0 = B0
F1 = B1

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 R = A2
F0 =
F1 =

F0 =
F1 =

Wait FIFO A0 B0

B B0 B1 R = B1
F0 =
F1 =

F0 =
F1 =

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 R = A2
F0 =
F1 =

F0 =
F1 =

Wait FIFO A0 B0

B B0 B1 B1 R = B1
F0 =
F1 =

F0 =
F1 =

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3 R = A2
F0 = A3
F1 = A3

F0 =
F1 =

Wait FIFO A0 B0

B B0 B1 B1 B2 R = B1
F0 = B1
F1 = B2

F0 =
F1 =

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3 R = A2
F0 = A3
F1 = A3

F0 = A2
F1 = A3

Read B A0 B0

B B0 B1 B1 B2 R = B1
F0 = B1
F1 = B2

F0 = B1
F1 = B1

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3 R = A2
F0 = A3
F1 = A3

F0 = A2
F1 = A3

Wait FIFO A0 B0
B1 B1

B B0 B1 B1 B2 R = B2
F0 =
F1 =

F0 =
F1 =

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3
A99 A99

R = A2
F0 = A3
F1 = A3

F0 = A2
F1 = A3

Wait FIFO A0 B0
B1 B1

B B0 B1 B1 B2
B99 B99

R = B2
F0 = B99
F1 = B99

F0 =
F1 =

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3
A99 A99

R = A2
F0 = A3
F1 = A3

F0 = A2
F1 = A3

Wait FIFO A0 B0
B1 B1

B B0 B1 B1 B2
B99 B99

R = B2
F0 = B99
F1 = B99

F0 = B2
F1 = B99

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3
A99 A99

R = A2
F0 = A3
F1 = A3

F0 = A2
F1 = A3

Read A,B A0 B0
B1 B1
A2 B2

B B0 B1 B1 B2
B99 B99

R = B2
F0 = B99
F1 = B99

F0 = B2
F1 = B99

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3
A99 A99

R =
F0 = A3
F1 = A3

F0 = A3
F1 = A3

Wait A0 B0
B1 B1
A2 B2

B B0 B1 B1 B2
B99 B99

R =
F0 = B99
F1 = B99

F0 = B99
F1 = B99

Example

F0

F1

R

Samples FIFO
and
Register
content

Samples
seen by
merger

Operation Output
stream

A A0 A2 A3 A3
A99 A99

R =
F0 = A3
F1 = A3

F0 = A3
F1 = A3

Read A A0 B0
B1 B1
A2 B2
A3 A3

B B0 B1 B1 B2
B99 B99

R =
F0 = B99
F1 = B99

F0 = B99
F1 = B99

Simple comparison

Finding two oldest samples out of four may seem
like a complicated task (at high clock frequency).

Three comparisons required by binary method may
be reduced to two, when utilising the fact that input
streams are sorted.

So in two sample FIFO

Simple comparison

If the opposite

Merger should read two samples from stream B.

If none of above is true, merger should read one
sample from each stream.

Additional comparison of AF0 and BF0 is required to
determine, with one is older.

If newer of two oldest samples from stream A is
older than oldest sample from stream B then both
samples from stream A are older than any sample
from stream B.

Merger should read two samples from stream A.

Results Presented merger was implemented in VHDL

Successful validation on random data

No timing issues on Xilinx Kintex 7 FPGA, working with
160 MHz clock.

Extras

Stream merging - clock per cycle

If merger outputs two samples each clock cycle: Data streams must be buffered:

A0
B0 A0 B0 ..

A0
B0 A0 ..

Stream merging - clock per cycle

If merger outputs two samples each clock cycle: Data streams must be buffered:

A0 A1
B0 B0 A0 B0 ..

A0 B0 B0 A1 ..

A0 A1
B0 B0 A0

A0 B0 ..

Stream merging - clock per cycle

If merger outputs two samples each clock cycle: Data streams must be buffered:

A0 A1 A1
B0 B0 B0 A0 B0 ..

A0 B0 B0 A1 ..
A0 B0 B0 A1 B0 A1 ..

A0 A1 A1
B0 B0 B0 A0

A0 B0 ..
A0 B0 B0 ..

Stream merging - clock per cycle

If merger outputted two samples each clock cycle: Data streams must be buffered:

A0 A1 A1 A7
B0 B0 B0 B5 A0 B0 ..

A0 B0 B0 A1 ..
A0 B0 B0 A1 B0 A1 ..
A0 B0 B0 A1 B0 A1 B5 B7 ..

A0 A1 A1 A7
B0 B0 B0 B5 A0

A0 B0 ..
A0 B0 B0 ..
A0 B0 B0 B0 ..

Stream merging - clock per cycle

If merger outputs two samples each clock cycle: Data streams must be buffered:

A0 A1 A1 A7
B0 B0 B0 B5 A0 B0 ..

A0 B0 B0 A1 ..
A0 B0 B0 A1 B0 A1 ..
A0 B0 B0 A1 B0 A1 B5 B7 ..

A0 A1 A1 A7
B0 B0 B0 B5 A0

A0 B0 ..
A0 B0 B0 ..
A0 B0 B0 B0 ..
A0 B0 B0 B0 A1 ..

Stream merging - clock per cycle

If merger outputs two samples each clock cycle: Data streams must be buffered:

A0 A1 A1 A7
B0 B0 B0 B5 A0 B0 ..

A0 B0 B0 A1 ..
A0 B0 B0 A1 B0 A1 ..
A0 B0 B0 A1 B0 A1 B5 B7 ..

A0 A1 A1 A7
B0 B0 B0 B5 A0

A0 B0 ..
A0 B0 B0 ..
A0 B0 B0 B0 ..
A0 B0 B0 B0 A1 ..
A0 B0 B0 B0 A1 A1 ..

Stream merging - clock per cycle

If merger outputs two samples each clock cycle: Data streams must be buffered:

A0 A1 A1 A7
B0 B0 B0 B5 A0 B0 ..

A0 B0 B0 A1 ..
A0 B0 B0 A1 B0 A1 ..
A0 B0 B0 A1 B0 A1 B5 B7 ..

A0 A1 A1 A7
B0 B0 B0 B5 A0

A0 B0 ..
A0 B0 B0 ..
A0 B0 B0 B0 ..
A0 B0 B0 B0 A1 ..
A0 B0 B0 B0 A1 A1 B5 A7 ..

Waiting for two valid samples

Merger outputting a sample on each clock cycle Merger waiting for non empty stream FIFOs

A0
B0 A0 ..

A0
B0 A0 ..

Waiting for two valid samples

Merger outputting a sample on each clock cycle Merger waiting for non empty stream FIFOs

A0 A1
B0 __ A0 ..

A0 B0 ..

A0 A1
B0 __ A0 ..

A0 B0 ..

Waiting for two valid samples

Merger outputting a sample on each clock cycle Merger waiting for non empty stream FIFOs

A0 A1 A3
B0 __ __ A0 ..

A0 B0 ..
A0 B0 A1..

A0 A1 A3
B0 __ __ A0 ..

A0 B0 ..
A0 B0 ..

Waiting for two valid samples

Merger outputting a sample on each clock cycle Merger waiting for non empty stream FIFOs

A0 A1 A3 A7
B0 __ __ B0 A0 ..

A0 B0 ..
A0 B0 A1..
A0 B0 A1 B0 ..

A0 A1 A3 A7
B0 __ __ B0 A0 B0 ..

A0 B0 ..
A0 B0 B0 ..

Waiting for two valid samples

Merger outputting a sample on each clock cycle Merger waiting for non empty stream FIFOs

A0 A1 A3 A7
B0 __ __ B0 A0 ..

A0 B0 ..
A0 B0 A1..
A0 B0 A1 B0 ..
A0 B0 A1 B0 A3 ..

A0 A1 A3 A7
B0 __ __ B0 A0 B0 ..

A0 B0 ..
A0 B0 B0 ..
A0 B0 B0 A1 ..

Waiting for two valid samples

Merger outputting a sample on each clock cycle Merger waiting for non empty stream FIFOs

A0 A1 A3 A7
B0 __ __ B0 A0 ..

A0 B0 ..
A0 B0 A1..
A0 B0 A1 B0 ..
A0 B0 A1 B0 A3 A7 ..

A0 A1 A3 A7
B0 __ __ B0 A0 B0 ..

A0 B0 ..
A0 B0 B0 ..
A0 B0 B0 A1 ..
A0 B0 B0 A1 A3 ..

Waiting for two valid samples

Merger outputting a sample on each clock cycle Merger waiting for non empty stream FIFOs

A0 A1 A3 A7
B0 __ __ B0 A0 ..

A0 B0 ..
A0 B0 A1..
A0 B0 A1 B0 ..
A0 B0 A1 B0 A3 A7 ..

A0 A1 A3 A7
B0 __ __ B0 A0 B0 ..

A0 B0 ..
A0 B0 B0 ..
A0 B0 B0 A1 ..
A0 B0 B0 A1 A3 A7 ..

