

Low energy irradiation @ Cave X6

- Energy: ≤ 11.4 MeV/u (H...Fe)
 - Relevance for space research? (stopping particles)
- Thin samples only!
- Samples in a magazine
- Beam application: scattered beam

 X-ray source (250 kV, 15 mA) (near X6)

Several instructions for safety and radio protection required!

X6 Cave

Upgraded irradiation device in X6

Cave M / Cave A

Cave M (medical)

- Patient treatment until 2009
- now used for experimental research in ion beam therapy (motion target irradiation)
- Irradiation for radio biology
- Beam scanning

Cave A

- Technical irradiation room
- Irradiation with beam scanning
- Experiments:
 - Biophysics
 - Material research
 - Atomic physics

Infrastructure for irradiation

- The irradiation infrastructure for the IBER-17 campaign will be very similar compared to the recent IBER08 and IBER10 programs!
- Both experimental rooms (Cave M and Cave A) will be available even for complex irradiations.
- Scanning application for various applications:
 - Simple mono-energetic patterns
 - small precise fields, e.g. 2 x 2 cm
 - large fields up to 20 x 20 cm
 - **3D** iso-dose irradiations (spread-out Bragg peaks, cubes, spheres) energy variation: passive with range-shifter (at least for 2018 due to the FAIR extension)
 - Complex fields (like clinical treatment plans)
 - Dosimetry or Accuracy of applied fluence:
 - ± 10% (conservative)
 - ± 5% for carbon and clinical energies

Possible intensities and energies in Cave A / M

SIS-18 Cave A / Cave M Experiments							
Ion type							
	protons	He	C	Ne	Ar	Fe, Kr, Xe, U	others
Time structure	slow extraction, spill length typically 1- 10 sec						
Experiments using higher particle rates (high dose)							
Max. number of ions per cycle	2x10 ¹⁰	1 x10 ¹⁰	2x10 ⁹	5x10 ⁸	1.5 x10 ⁸	-	-
Typical number of ions per cycle	2x10 ⁹	1 x10 ⁹	2x10 ⁸	5x10 ⁷	1.5 x10 ⁷	-	-
Max. energy	230 MeV	230 MeV/u	430 MeV/u	430 MeV/u	500 MeV/u	-	-
Beam spot radius FWHM [mm]	8-30	6-20	4-12	4-12	4-12	-	-
	Other	experiments (space research	, low-lose effects	s, etc.)		
Max. number of ions per cycle	2x10 ⁸	1 x10 ⁸	1 x10 ⁸	1 x10 ⁸	1 x10 ⁸	1 x10 ⁸	1 x10 ⁸
Max. energy	2 (4) GeV	2 GeV/u	2 GeV/u	2 GeV/u	1 GeV/u	1 GeV/u	1 GeV/u
Beam spot radius FWHM [mm]	4-30	4-20	4-12	4-12	4-12	4-12	4-12

Physics experiments

- Energy: full energy range of the SIS18 synchrotron (see last slide)
- Intensities: ca. 1000 ions/sec 108 (109) (see last slide)
- Beam width: pencil beam typ. 5- 10 mm FWHM, adjustable by quad magnets
- Scanning or straight beam
- Nuclear physics experiments (fragmentation etc.) better in Cave A

4D-irradiation experiment with pics, cardiac arrhythmia ablation, 2015

Cave M

- Fully equipped irradiation room
- Optimized for biological and technical samples
- High dose and high LET beams (>10Gy Fe) could stress the vacuum window (polymer foils)
- Currently under construction (upgrade for faster scanning),
 availability in August 2018 not guaranteed

4D-irradiation experiment with pics, cardiac arrhythmia ablation, 2015

Cave A

- Fully equipped irradiation room
- Optimized for biological and technical samples
- Good for high dose and LET irradiation (steel window)
- Available in any case (08/2018 2019)

Equipment:

- Beam Scanning
- Laser (adjustment)
- Video
- Cables/network
- · Compressed air
- Sample holders
- Etc. ...

Sample holder / changer

Cave M (irradiation of cell culture flasks)

using the conveyor-belt in combination with camera and Iso-centre lasers is very robust, easy and reliable

New sample changer (under construction)

Flexible Beam Application by Scanning

Flexible Beam Application by Scanning

We support and consult you through the whole workflow:

- in advance: how to irradiate, etc. (per eMail or tel.)
- e.g. converting dose ↔ fluence, energy, intensity, etc.

Your request (example):

- Cell culture flask 40 x 80 mm²
- field must cover 40 x 60 mm²
- 4He 600 MeV/u
 - sample A: 1e7 ions/cm²
 - sample B: 1e7 ions/cm²
 - sample C: 2e7 ions/cm²
 - sample D : 2e7 ions/cm²
 - ...
 - ...
- We calculate the scanning plan and apply the beam
- You handle and adjust the biological samples on the conveyor-belt

Flexible Beam Application by Scanning

... or even more complex irradiations with multiple energies, for instance:

or iso-dose to a sphere

(this is normally relevant for therapy related research)

In 2018 for energy variation probably a range shifter has to be used (if SOBP is needed).

Scanning pattern for a sphere irradiation

Radiation protection requirements

Online instruction (& test) for safety (general)

- For everybody who works @ GSI
- Online instruction (& test) for radiation protection
- Medical examination letter
 - from your home institute or
 - from GSI
- Dosemeter badge (also for neutron dose)
 - own badge (from your home institute)
 or
 - badge from GSI (can take a couple of days)
- Radiation passport
- On-site instruction (before experiment)

For all persons who will enter the Cave = radiation protection area

(min. 1 person of the research group)

Thank you ...

Ion species in space

