

Progress of the Cluster-Jet Target

Gas System Studies, Beam Adjustments and its Electronics, and Gas Supply Connections

PANDA Collaboration Meeting 2017/3 Novosibirsk, Russia

Benjamin Hetz WWU Münster

Gas System Studies

- Ongoing investigation of CERN nozzle clogging:
 - Using a self produced nozzle (A21) no clogging appears
 - No severe problem because both nozzles show similar thickness profiles

Gas System Studies

- Severe problem for our current target studies at Münster:
 - PANDA Target purifier was already broken (see talk PANDA Meeting 2017/2)
 - Recent black out killed the prototype purifier, too
 - Maximal gas pressure of ~15 bar available/wanted ~20 bar
 - No hydrogen purifier for highest thicknesses available at Münster
 - Final purifier (SMI Vienna) will become available only in some years

- Status at last meeting
 - Auxiliary support frame (not needed at PANDA) too soft
 - Beamline got misadjusted during alignment work
 - Due to this no signal inside the scattering chamber observed
 - No significant pressure increase by cluster beam in the beam dump

- Status now:
 - Beamline is (coarse) adjusted thanks to an advanced support frame
 - Fine adjustment is done by using:
 - Optical thickness monitor system in transition vacuum chamber
 - Scattering chamber thickness monitor signal
 - Beam dump gas input/pressure increases in each stage
 - Iterative process for each nozzle

- During beam adjustment studies scattering chamber monitor was optimized
 - It takes less time to measure a profile
 - More measure points possible
 - Advanced operator interface

Overall speed up for beam alignment work/beam studies

- Graphical Operator Interface for skimmer, collimator, and nozzle manipulation is under development
 - Showing/manipulate skimmer, collimator position
 - Showing/manipulate nozzle tilting angle
 - Calculate beam position, etc. at interaction point

Will ease beam line adjustments for target operator a lot

Interferometer Studies (by S. Grieser)

- Observation of jet-beam up to 30 mm behind nozzle
- Data show directed beam of highest thickness
- Different nozzles, gases and stagnation conditions were measured

Analysis of thickness, time development, jet beam range, etc. are currently running

Next and Ongoing Steps

- Investigation of CERN nozzle clogging problems
- Fine adjustment of beamline and target position
- Studies of pressures and flows into each chamber
- Investigation of beam dump gas backflow rate
 - Data will be very preliminary because of no highest beam thickness available
- Studies/calibration of the optical monitor system at the transition vacuum chamber (talk PANDA 2017/2)
- Interferometer studies of the jet-beam

Electronics and Gas Supply Connections of the PANDA Cluster-Jet Target

(also in reference to Tasso's Service Tables mail from July)

A (very) rough sketch of the target/pumping station location

- View onto the target spectrometer platform
- Indicated is the routing of our cable ducts for internal target communication only, these wires do not need communication with something else but our slow control system
- More or less to treat as one big cable
- External communication given by WAN connection point from the 19" rack (see prev. slides)

A (very) rough sketch of the needed beam dump backing pump line

- Beam dump located beneath the detector
- Beam dump needs a backing pumping pipe to the pumping station at the target spectrometer platform
- Additionally a backup backing pump near the beam dump would be worthwhile
- No concrete plans do exist about pumping line routing, yet
- Possible locations and realization of these lines/pumping solutions are open for discussion

Location of the Cluster-Jet Target Rack

- We bring our own rack for the cluster-jet source
- Already completely filled and set into operation at Münster
- Concrete location and size already shown in the latest PANDA step files
- Connections, power lines, etc. shown in the previous slides

Location of the Beam Dump Rack

- As being told the rack 42U-T1009 on platform TW East is still completely unclaimed
- So we claim the whole rack for the beam dump electronics
- About 1/2 is filled with the turbopump supply units
- The other half can be used for the final slow control system by the Warsaw group
 - Which supply lines etc. are needed here?
 - Other wishes?

Summary and Outlook

- Ongoing beam studies and adjustments to determine gas loads and flows
- Currently no possibility to do measurements with highest thickness in Münster (and COSY) due to broken hydrogen purifiers
- Continuous development of local target controls

- Electrical, coolant, gas installations at PANDA shown
 - Additional input from gas system and slow control subgroups is welcome
- Beam dump vacuum pipe/pump connection plans have to be concreted

