

Beam Dynamics for SIS100 of FAIR and for the Future Circular Collider (FCC)

Vladimir Kornilov

Accelerator Physics Department, GSI Darmstadt

FAIR Project

- NUSTAR
 - R³B
 - HISPEC/DESPEC
 - MATS
 - LASPEC
 - ILIMA
 - EXL
- APPA
 - SPARC
 - HEDGEHOB
 - BIOMAT
- CBM-HADES
 - CBM
 - HADES
- Antiprotons
 - PANDA

The SIS100 synchrotron is the

central accelerator of the FAIR Project:

Beams of high intensity, high energy, short/long pulses,...

G S 1

Working Package SIS100 Beam Dynamics

https://wiki.gsi.de/foswiki/bin/view/SIS100BD/WebHome

SIS100 Beam Dynamics

- Instabilities & Mitigation
- Main magnet field quality assessment & sorting
- Beam-loss / emittance simulations
- Resonance correction
- Slow extraction
- Impedances
- RF manipulations and stability
- Bunch compression, transition crossing

 $E \propto B_{dipole} \times \rho_{bending}$

SIS18: 18 Tm U²⁸⁺ 0.2 GeV/u Protons 4 GeV

SIS100: 100 Tm U²⁸⁺ 1.5 GeV/u Protons 29 GeV

Aerial photo of the construction site taken on May 25, 2014 (photo: Jan Schäfer for FAIR)

The SIS100 Synchrotron

- Length: 5 x SIS18 length (= 1 083.6 m)
- Reference ion operation: U²⁸⁺
 - Control vacuum pressure
 - "Charge Separator Lattice"
- Protons
 - Variable γ_t -optics
 - Fast γ_t -jump
- RF system
 - State-of-the-art bunch manipulations: Bunch merging & compression, Barrier buckets
- Versatile extraction modes
 - Fast kicker system
 - Slow extraction

C.Omet, EuCARD-2 XRING Workshop, March 2017

Images courtesy of M. Konradt / J. Falenski

 \Rightarrow Injection from SIS18

^{CCeleration}

^{ransfer}

aser Cooling

Bunch compression

to Experiments

.....

Acceleration

SIS100

SIS300

The FCC Study

High Energy: Need for a next-generation accelerator

Since 60s, colliders are major discovery machines

- Higgs Boson
- Dark Matter
- Dark Energy
- Matter ↔ Antimatter
- Gravity
- Uncharted territory in the energy scale
- and much more...

The FCC Study

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*) –
 main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- **80-100 km tunnel infrastructure** in Geneva area, site specific
- *e⁺e⁻* collider (*FCC-ee*), as a possible first step
- *p-e* (*FCC-he*) option, integration one IP, FCC-hh & ERL
- **HE-LHC** with *FCC-hh* technology
- F. Zimmermann, EuCARD-2 XRING Workshop, March 2017

CERN Accelerators

Boosters for the FCC at CERN

(there are other options, in China, etc)

8

F. Zimmermann, EuCARD-2 XRING Workshop, March 2017

9

GSI

	SIS100 (ions)	SIS100 (p)	FCC-hh
С	1083.6 m	1083.6 m	100 km
Q _x	18.8	10.4	107.3
Ε _κ	0.2→1.5 GeV/u	4→29 GeV	3.3→50 TeV
f ₀	156→255 kHz	272→276 kHz	3 kHz
T ₀	6.4→3.9 µs	3.7 → 3.6 µs	0.3 ms
Bunch length	340 ns	160 ns	1.2 ns

Very different scales of: Length, Time, Frequency...

GSI

Stability of single-particle motion

Resonances

Vladimir Kornilov, GSI Accelerator Seminar, January 25, 2018

G 51

SIS100 Tune Diagram

Vertical Tune ${\mathbb Q}_{{\mathsf Y}}$

TUNE: Number of oscillations during one turn around the ring

Here: Transverse Oscillations

Resonances:

 $kQ_x + mQ_y = n$ 2nd order, 3rd order, 4th order, ...

SIS100, Operation type Heavy ions, fast extraction $Q_{X0} = 18.84$ $Q_{Y0} = 18.73$

There are tune shifts (ΔQ) and tune spreads

Space Charge

Self-field space charge

Related to beam center (moves with the beam)

$$\Delta Q_{
m sc} = rac{\lambda_0 r_p R}{\gamma^3 eta^2 arepsilon_\perp}$$

$$Q = Q_0 - \Delta Q_{sc}$$

changes the individual tunes Q_{inc} , does not shift collective tune Q_{coh}

High Beam Intensity, Low Energy → Strong Space-Charge

Space-Charge is an internal interaction: Very different from other forces

Space Charge in SIS100

Space Charge in SIS100

SIS100 Dipole Magnets

Superconducting (U²⁸⁺) fast magnets

P. Spiller, Status of the FAIR Synchrotron Projects, IPAC2014 E. Fischer, MAC12, November 2014, GSI Darmstadt

Vladimir Kornilov, GSI Accelerator Seminar, January 25, 2018

Dipole Magnets: Field Quality

Detailed magnetic field measurements for SIS100 Dipole Magnets: SCM Group, F.Kaether, C.Roux, A.Mierau, G.Golluccio, et al.

Particle motion simulations

Particle tracking simulations (MADX code): Dynamics Aperture for single-particle stability

V. Kornilov, SIS100 FoS dipole: beam physics aspects 11th Machine Advisory Committee (MAC), Darmstadt, May 26-27, 2015

SIS100 Main Magnets

In the past: data from magnet computer models. Now: the new database of the SIS100 magnets from measurements

V. Kornilov, MAC11, May 2014

DA/σ

Magnet Center		Connection Side		Non-connection Side		
$B_2 = 0$ $dB_2 = B_{2FoS} \times 1.0$	$A_2 = A_{2FoS}$ $dA_2 = A_{2FoS} \times 0.25$	$B_2 = 0$ $dB_2 = B_{2FoS} \times 1.0$	$A_2 = A_{2FoS}$ $dA_2 = 0.2$ unit	$B_2 = 0$ $dB_2 = B_{2FoS} \times 1.0$	$\begin{array}{l} A_2 = A_{2\text{FoS}} \\ dA_2 = A_{2\text{FoS}} \times 0.5 \end{array}$	
$B_3 = B_{3FoS}$ $dB_3 = B_{3FoS} \times 0.5$	$A_3 = A_{3FoS}$ $dA_3 = A_{3FoS} \times 0.25$	$B_3 = B_{3FoS}$ $dB_3 = B_{3FoS} \times 0.25$	$A_3 = A_{3FoS}$ $dA_3 = 0.2$ unit	$B_3 = B_{3FoS}$ $dB_3 = B_{3FoS} \times 0.25$	$A_3 = A_{3FoS}$ $dA_3 = A_{3FoS} \times 0.5$	
$B_4 = 0$ $dB_4 = B_{4FoS} \times 1.0$	$A_4 = A_{4FoS}$ $dA_4 = A_{4FoS} \times 0.25$	$B_4 = 0$ $dB_4 = B_{4FoS} \times 1.0$	$A_4 = A_{4FoS}$ $dA_4 = 0.2 \text{ unit}$	$B_4 = 0$ $dB_4 = B_{4FoS} \times 1.0$	$A_4 = A_{4FoS}$ d $A_4 = 0.2$ unit	
$B_{5} = B_{5FoS}$ $dB_{5} = A_{5FoS} \times 1.0$	$A_{s} = A_{sFos}$ $dA_{s} = A_{sFos} \times 0.5$	$B_{S} = B_{SFoS}$ $dB_{S} = B_{SFoS} \times 0.5$	$A_5 = A_{SFoS}$ $dA_5 = 0.2$ unit	$B_{5} = B_{SFoS}$ $dB_{5} = B_{SFoS} \times 0.5$	$A_5 = A_{5FoS}$ $dA_5 = 0.2$ unit	
$B_6 = B_{6FoS}$ $dB_6 = B_{6FoS} \times 0.25$	$A_6 = A_{6FoS}$ $dA_6 = A_{6FoS} \times 0.25$	$B_6 = B_{6FoS}$ $dB_6 = B_{6FoS} \times 0.25$	$A_6 = A_{6FoS}$ $dA_6 = 0.2$ unit	$B_6 = B_{6FoS}$ $dB_6 = B_{6FoS} \times 0.5$	$A_6 = A_{6FoS}$ $dA_6 = 0.2$ unit	
$B_7 = B_{7FoS}$ $dB_7 = B_{7FoS} \times 0.25$	$A_7 = A_{7FoS}$ $dA_7 = A_{7FoS} \times 0.25$	$B_7 = B_{7FoS}$ $dB_7 = B_{7FoS} \times 0.25$	$A_7 = A_{7FoS}$ $dA_7 = 0.2$ unit	B ₇ = 0.2 unit dB ₇ = 0.2 unit	$A_7 = A_{7FoS}$ $dA_7 = 0.2$ unit	

Vladimir Kornilov, GSI Accelerator Seminar, January 25, 2018

Resonance Compensation

Resonance compensation using the Magnet Correctors (2nd, 3rd, 4th order, skew and normal Magnets)

Figure 3: Beam survival for a bunched beam stored for 1 second as function of Q_y . The blue curve is obtained for the partially compensated third order resonance, whereas the red curve is measured for the naked machine.

G.Franchetti, et.al., IPAC2015

Experimental proof & experience at SIS18

FCC-hh Tune Diagram

Q_x=107.32 Q_v=108.31

 0.2×10^{-3}

FCC tune shifts:

Vertical Tune Q_y

Long-time storage (hours). Very low-loss requirements.

FCC Dipole Magnets

16 T dipole options and plans prototype production by 2025

The U.S. Magnet Development Program Plan

Particle motion simulations

Dipoles errors tables

	normal	Sys inj	Sys coll	Uncert	Ran	
~	2	0	0	0.484	0.484	1 1
vu	3	-5	20	0.781	0.781	VI
	4	0	0	0.065	0.065	
	5	-1	-1.5	0.074	0.074	
	6	0	0	0.009	0.009	
	7	-0.5	1.3	0.016	0.016	
	8	0	0	0.001	0.001	
	9	-0.100	0.05	0.002	0.002	
	10	0	0	0	0	
	skew					
	2	0	0	1.108	1.108	
	3	0	0	0.256	0.256	
	4	0	0	0.252	0.252	
	5	0	0	0.05	0.05	
	6	0	0	0.04	0.04	
	7	0	0	0.007	0.007	
	8	0	0	0.007	0.007	
	9	0	0	0.002	0.002	
	10	0	0	0.001	0.001	

-					
	normal	Sys inj	Sys coll	Uncert	Ran
	2	0	50	1.000	1.000
	3	7	-1	1.600	1.600
	4	0	0.5	0.100	0.100
	5	1	0.5	0.100	0.100
	6	0	0	0.020	0.020
	7	-1.5	0.3	0.030	0.030
	8	0	0	0.002	0.002
	9	-0.1	0.1	0.005	0.005
	10	0	0	0.001	0.001
	skew				
	2	0	0	2.200	2.200
	3	0	0	0.500	0.500
	4	0	0	0.500	0.500
	5	0	0	0.100	0.100
	6	0	0	0.080	0.080
	7	0	0	0.010	0.010
	8	0	0	0.010	0.010
	9	0	0	0.003	0.003
1	10	0	0	0.002	0.002

B. Dalena, et al, FCC Week 2017

Stability of collective beam motion

Instabilities, Impedances

Collective Oscillations

Collective (coherent) beam motion

Unstable Oscillations

Instabilities in SIS18

For tunes above Q_y ≈ 3.79: strong collective oscillations, fast beam loss

exponential growth with $\tau = 0.11 \text{ ms}$ $A(t) = A_0 \exp\left\{\frac{t}{\tau}\right\}$ 1 turn = 0.989 us

Kornilov, 2016, 2014,2008

Instabilities in SIS18

- development of Transverse Feedback System for SIS18 and SIS100
- design of an octupole magnet set for SIS18 (role of space charge)
- understanding the impedances in SIS18 \rightarrow SIS100

Vladimir Kornilov, GSI Accelerator Seminar, January 25, 2018

Instability Drive vs. Damping

$\Delta\Omega = \Delta\Omega_{\rm Re} + i\gamma_{\rm drive} + i\gamma_{\rm damping}$ change the parameters of the driving mechanism

How to cure instabilities

Reduce the impedances, change the beam/machine settings,... Active cures: feedback systems Passive mitigation: octupole magnets

Feedback Systems

Essential for operation in many accelerators

Foreseen in FCC and in SIS100

Octupole Magnets

LHC: 168 dedicated octupoles for Landau damping

Schematic yoke profile of an octupole magnet

Dispersion Relation

L.Laslett, V.Neil, A.Sessler, 1965
D.Möhl, H.Schönauer, 1974
J.Berg, F.Ruggiero, CERN SL-96-71 AP 1996

$$\Delta Q_{\rm coh} \int \frac{1}{\Delta Q_{\rm oct} - \Omega/\omega_0} J_x \frac{\partial \psi_{\perp}}{\partial J_x} dJ_x dJ_y = 1$$
complex coherent tune shift for
the beam without damping
The solution: collective mode frequency Ω
for the given impedance and beam

Octupole Tune shifts:

$$egin{aligned} \Delta Q_x &= igg\{rac{3}{8\pi} \sum \hat{eta}_x^2 rac{O_3 L_{
m m}}{B
ho} igg\} J_x - igg\{rac{3}{8\pi} \sum 2 \hat{eta}_x \hat{eta}_y rac{O_3 L_{
m m}}{B
ho} igg\} J_y \ \Delta Q_y &= igg\{rac{3}{8\pi} \sum \hat{eta}_y^2 rac{O_3 L_{
m m}}{B
ho} igg\} J_y - igg\{rac{3}{8\pi} \sum 2 \hat{eta}_x \hat{eta}_y rac{O_3 L_{
m m}}{B
ho} igg\} J_x \end{aligned}$$

This dispersion relation has been used for the planning of the LHC octupole scheme.

Transverse Stability

Instabilities in SIS100

Ion Fast extraction Working Point Q_x=18.84 Q_v=18.73

Tunes below integer: head-tail instability driven by the resistive-wall impedance

Instabilities in SIS100

Octupoles Magnets in SIS100

V. Kornilov, O. Boine-Frankenheim, I. Hofmann, Transverse Collective Instabilities in SIS100, GSI-Acc-Note-2008-006, GSI Darmstadt (2008)

Beam Pipe

GSI

FCC Beam Pipe

F. Zimmermann, EuCARD-2 XRING Workshop, March 2017

FCC-hh: ≈5 MW Synchrotron Radiation emitted in cold arcs **beam screen at 40—60 K** (LHC at 5—20 K) **slits & wedge** capture and hide photons **surface treatment**

FCC Beam Pipe

FCC-hh Task 2.4, TU Darmstadt, O.Boine-Frankenheim et al.

Beam pipe	
Material	Cu, Ti
Cu thickness [µm]	300

Beam pipe impedance and the resulting instabilities are an input for the feedback systems and for the passive mitigation (octupoles)

SIS100 Beam Pipe

Dipole chambers. Curved, thickness 0.3 mm (eddy currents), special stainless steel, cooling tubes, stability ribs.

S. Wilfert, et al, March 2017. GSI Vacuum Systems.

V. Kornilov, Coupling Impedances in SIS100, Project report 2015.

Machine Protection

FCC Machine Protection

stored energy 8.4 GJ per beam

 at least one order of magnitude higher than for LHC, equivalent to A380 (560 t) at nominal speed (850

- collimation, control of beam losses and radiation effects (shielding) are of prime importance.
- injection, beam transfer and beam dump all critical

F. Zimmermann, EuCARD-2 XRING Workshop, March 2017

Beam Dynamics studies for the design and efficiency of the collimation system

SIS100 Collimation

SIS100 Halo Collimation System

RF Systems

GSI

SIS100 RF Cycles

Complex RF manipulations for different operation cycles

Bunches in RF buckets

A. Chorniy, SIS100 Beam Dynamics Meeting, May 2012

Usage of the Dual RF for better beam lifetime and stability

U (arb. units)

Vladimir Kornilov, GSI Accelerator Seminar, January 25, 2018

Dual RF for SIS100

Beam time in SIS18:

¹²⁴Xe⁴³⁺ ions 12 June 2016 $N_p = 2 \times 10^9$ $E_K = 6.81 \text{ MeV/u}$ MA h=4 V=2.2kV F h=8 V=1.1kV

 $\Delta Q_{sc} \approx -0.12$ (vert) $\Delta Q_{sc} \approx -0.06$ (hor)

V. Kornilov, SIS18 Beam Time 2016

RF Studies for FCC

Planning and design of the RF System

RF Voltage during the ramp

E. Shaposhnikova, FCC Week 2017

G S 1

Non-Common FCC—SIS100 Beam Dynamics Issues

G 55 1

Dynamic Vacuum in SIS100

Higher Intensities due to low charge states. Stable vacuum is a critical issue.

L. Bozyk, C. Omet, D. Ondreka, et al

Pre-Series SIS100 Cryocatcher

Electron Clouds, Beam-Beam in FCC

Electron Coulds

Electron Cloud Buildup

O.Boine-Frankenheim, FCC Week 2017

Beam-Beam

Vladimir Kornilov, GSI Accelerator Seminar, January 25, 2018

Beam Extraction from SIS100

Dedicated devices for slow extraction. Fast extraction system. Emergency extraction system.

- D. Ondreka, November 2017
- S. Sorge, November 2017

Challenging issue: spill quality of the slow extraction, 1-10 sec

Summary

- Field quality (Dynamic Aperture), Resonances & Correctors
 SIS100: resonance crossing due to space-charge
 FCC: very low loss requirements for long storage (hours)
- Collective Instabilities: Impedances, active cures (feedback), passive mitigation (octupoles)
 - SIS100: space-charge
 - FCC: electron clouds, beam-beam
- Machine Protection
- RF Manipulations and Stability
- Non-Common beam dynamics issues (U²⁸⁺ in SIS100, collider FCC)