Design and fabrication of a Controlled water based cooling system for the CBM Muon Chamber

D. Nag¹, S. Biswas¹, S. Chattopadhyay², S. Das¹, A.K. Dubey², C. Ghosh², A. Kumar², S.K. Prasad¹ and J. Saini²

¹Bose Institute, Department of Physics and CAPSS, EN-80, Sector V, Kolkata-700091, India ²Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata, West Bengal 700064

e-mail: *dipanjannag19@gmail.com, dipanjannag@jcbose.ac.in

61st DAE-BRNS Symposium on Nuclear Physics December 05-09, 2016 Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata -700064, India

Motivation

A triple GEM based Muon Chamber (MUCH) will be used in the CBM Experiment at FAIR [1,2],GSI for Muon Detection

□ The Readout Electronics of the MUCH will continuously dissipate heat which is estimated to be 90 W per Sector.

□ To keep the temperature within the desired working range this heat must be taken out continuously.

□ Since wire bonding technique is used, air cooling is not an option, water cooling [3] is preferred.

□ An automated intelligent flow controller has been devised for this purpose.

30.6

30.4 0

Water Flows through 6mm Copper pipes, soldered on copper plate

□ Flow is controlled by the <u>automated cooling controller</u>

The PID loop

A closed loop negative feedback PID system is used for the flow control mechanism [4].
 The Algorithm is based on the formula

OUTPUT = $k_p^* e(t) + k_i \int e(t) dt + k_d^* de(t)/dt$, where $k_p^*, k_d^*, k_i^* = constants$ e(t) = (Desired temperature-Actual temperature)

Output from controller is 8 bit PWM [5] signal
 Motor is controlled via Power Transistor

□ The controller effectively cools down the system within reasonable time

- □ Accuracy was noted to be around 1°C
- □ Sink Temperature was noted using a normal laboratory thermometer
- □ The Result was found to be more accurate when Sink temp was low

FIG. 2: Temperature and water flow rate as a function of time for different set points

Summary and future plans

Preliminary tests indicate that the system is working as expected, fluctuation of temperature is within allowable range.

- □ Tuning the PID parameters more finely will reduce the fluctuation further.
- □ The Copper channels will be replaced with Aluminium Channels of real size.
- □ Radiation hard microcontroller will be deployed.

Acknowledgements

We would like to thank Mr. G.S.N Murthy of ECIL, Mr. J. Kumar of VECC and VECC workshop for their help in this project.

[1] http://www.fair-center.eu/ [2] S. Biswas et al., NIM A 824 (2016) 504. [3] Vikas Jain et al., DAE-BRNS Symp. On Nucl. Phys. 60 (2015). [4] http://innovativecontrols.com/blog/basics-tuning-pid-loops [5] http://www.electronicstutorials.ws/blog/pulse-width-modulation.html

References