FXT Program and Physics Topics from Run 18 and Run 19

Xiaofeng Luo (罗晓峰) Central China Normal University

Sept. 23, 2017

Physics Motivation

а

1,000

100

Chemical potential (MeV

Exploring the QCD phase structure

- 1. Turning off the sQGP signal.
- 2. Critical Point
- 3. 1st order phase boundary

Scan the QCD phase diagram by tuning the colliding energies in heavy-ion collisions !

PBM&Johanna, Nature 448, 302-309 (2007)

Beam Energy Scan - I (2010-2017)

	√S _{NN} (GeV)	Events (X10 ⁶)	Year	*μ _Β (MeV)	*T _{CH} (MeV)		180 200 62.4 39 27 19.6 11.5 7.7 GeV
	200	350	2010	25	166		
	62.4	67	2010	73	165		
	54.4	~500	2017	83	165	eV)	
	39	39	2010	112	164	Ň	
	27	70	2011	156	162	Ц Ч	140
	19.6	36	2011	206	160		• 00-05% — Cleymans et al.
	14.5	20	2014	264	156		Grand Canonical Ensemble (Yield Fit)
	11.5	12	2010	316	152		
	7.7	4	2010	422	140		μ _B (MeV)
*	(µв, Т _{СН})	: J. Cleymar	ns et al., P	R <u>C73</u> , 034	905 (2006)	

Large baryon chemical potential coverage. (20~420 MeV)

STAR: Hadron Spectra from BES-I

 $\sqrt{s_{NN}} = 19.6 \text{ GeV Au+Au Collisions}$

Xiaofeng Luo

Highlights from BES-I

Xiaofeng Luo

Global Hyperon Polarization

STAR: Nature 548, 62 (2017)

Xiaofeng Luo

QCD Critical Point Search

• Lower energies (<7.7 GeV): key step to confirm the signature of QCD critical point

Xiaofeng Luo

BES-II White Paper

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Strong Endorsement by the NSAC 2015 http://science.energy.gov/~/media/np/nsac/pdf/ 2015LRP/2015_LRPNS_091815.pdf

The trends and features in BES-I data provide compelling motivation for a strong and concerted theoretical response, as well as for the experimental measurements with higher statistical precision from BES-II.

The detector upgrades planned for BES-II focus on maximizing the fraction of the particles in each collision that are measured, which is particularly important for fluctuation observables.

Xiaofeng Luo

125 MeV/c to 60 MeV/c

• Ready in 2019

Major Upgrades for BES-II

- Improves the fixed target program
- Provided by CBM-FAIR
- Ready in 2019

iTPC Project Status

- SAMPA FEE (WMP2)
 - 2FEEs and RDO installed on one inner most row of TPC
 - Running through USB port with beam
 - 200 chips for a sector this summer
 - ALICE MWP3 pre-production ~September 2017; 4000 chips afterward
- Sectors (strongback+padplane+WMPC)
 - First two sectors completed at LBL and arrived at SDU in June 5
 - Complete in August and back to BNL
- Insertion tool
 - Completed at UIC and arrived at BNL in May 12
- Reviews and Reports
 - DOE TCSM review 09/12/2017
 - MWPC readiness review at SDU 12/05/2017
 - LBL and SDU conducted local multiple reviews
 - Monthly Phone calls with DOE since 01/2017
 - Quarterly reports to DOE

- Two prototype modules with readout installed in run 17
 - CBM Triggerless Electronics interface with STAR DAQ/TRG systems
 - Provides performance for final design choices
- Run 18 plans on one full Sector
 - 3x32-strip MRPC with final readout electonics
 - Installation: 10-11/2017
- Complete installation in 11/2018
- Complete BES-II program with full eTOF coverage

Xiaofeng Luo

FXT Experiments at STAR (2018-2019)

Target design: Gold foil 1 mm Thick ~1 cm High ~4 cm Wide 210 cm from IR

FXT Data Taking Plan: 2015: Au+Au: 4.5 GeV (test Run) 2018: Au+Au :3 GeV (100 million events) 2019-2020: Au+Au: 6.2, 5, 4.5, 4, 3.5 GeV

FXT Pilot Runs were Successful

Xiaofeng Luo

FXT Program in 2018-2020

Collider Energy	Fixed- Target Energy	Single beam AGeV	CM Rapidity	m _B (MeV)	2	
62.4	7.7	30.3	2.10	420	1.75	b 3.0 b 3.0 c 1.52 c 1.55 c 1
39	6.2	18.6	1.87	487	1.5	
27	5.2	12.6	1.68	541	1.25	6.2 C
19.6	4.5	8.9	1.52	589	1	Barrel TO ^E PID
14.5	3.9	6.3	1.37	633	0.75	delaw -
11.5	3.5	4.8	1.25	666	0.5	eTOF PID
9.1	3.2	3.6	1.13	699	0.25	
7.7	3.0	2.9	1.05	721	0	Low PT for dE/dx PID
					(0 0.5 1 1.5 2 2.5 3

- Data rate is DAQ limited.
- Need100 Million Events at each energy.
- ~ 2 days per energy

BUR for Run 18 and Run 19

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0670

RHIC Beam Use Request For Runs 18 and 19

The STAR Collaboration

May 15, 2017

Two Highest Priorities for the next two RHIC runs (run 18 and 19) focus on two compelling programs key to **RHIC** mission

Run 18: isobar collisions at 200 GeV Decisive test of role of magnetic field in charge separation measurements

PAC Recommendation : Double blind Analysis ! Fill-by-fill switch or Weekly switch ? Under discussion in the STAR Coll.

Run 19: Initiating the BES-II Higher BES energies + Fixed Target (FXT) program

Xiaofeng Luo

Run	Energy	Duration	System	Goals	priority	Sequence
	?s _{NN} =200 GeV	3.5-wk	Zr+Zr	1.2B minbias	1	1
18		3.5-wk	Ru+Ru	1.2B minbias	1	2
	?s _{NN} =27 GeV	3-wk	Au+Au	1B minbias	2	3
	?s _{NN} =3 GeV(FXT)	2 days	Au+Au	100M minbias	3	4

1. Isobar collisions:

Study the CME contribution to charge separation, **Ru+Ru (44, 96) and Zr+Zr (40, 96)** charge different by 10% (44 vs 40), everything else the "same"

2. Au+Au @ 27 GeV:

High Statistics L and *L* Global Polarization Measurement Event-Plane Detector (EPD) presence important

3. Au+Au @ 3 GeV:

Fluctuation measurement at energies between HADES and BES-I Significant statistics in FXT mode with large acceptance

Search for CME in HIC

The topological charge density

Chiral Magnetic Effects :

- 1. Nonzero Topological Charge + LPV
- 2. Chiral Symmetry Restoration
- 3. Strong Magnetic Field

Observing : Charge Separation along B field. Measuring 2-particle correlation WRT Reaction Plan.

Controlled measurement

Projections for Isobar

Depending on background level different statistical significance

Proposal is to take 1.2B MB events

CME studies focus on 20-60% -

propose to trigger in this range, factor 2 in statistics
 Take ~200M MB events for baseline cross-checks

Xiaofeng Luo

Au+Au 27 GeV: Priority II

1B MB events

Confirm the difference between Lambda and (anti)Lambda Polarization

----Strong Magnetic Field

Other observables affected by MF: Coherent photo-production of J/Ψ and low-mass di-lepton in noncentral A+A collisions

Run 19 BUR Executive Summary

Beam Energy	$\sqrt{s_{NN}}$ (GeV)	Run Time	Species	Number Events	Priority	Sequence
(GeV/nucleon)						
9.8	19.6	4.5 weeks	Au+Au	400M MB	1	1
7.3	14.5	5.5 weeks	Au+Au	300M MB	1	3
5.75	11.5	5 weeks	Au+Au	230M MB	1	5
4.6	9.1^{-1}	4 weeks	Au+Au	160M MB	1	7
9.8	4.5 (FXT)	2 days	Au+Au	100M MB	2	2
7.3	3.9 (FXT)	2 days	Au+Au	100M MB	2	4
5.75	3.5 (FXT)	2 days	Au+Au	100M MB	2	6
31.2	7.7 (FXT)	2 days	Au+Au	100M MB	2	8
19.5	6.2 (FXT)	2 days	Au+Au	100M MB	2	9
13.5	5.2 (FXT)	2 days	Au+Au	100M MB	2	10

1. Au+Au @ 11.5 - 19.6 GeV:

Assume low-energy electron cooling ready mid-way through run & performs at design for 11.5 & 9.1 GeV running

2. Au+Au FXT:

Multiple measurements at energies between World FXT programs and BES-II Significant statistics in FXT mode with large acceptance

Physics Analysis Plan in Run 19

- R_{CP} of high p_T hadrons (up to 4.5 GeV), rapidity dependence
- Elliptic Flow of the phi meson, multi-strange baryon.
- Local Parity Violation studies (CME)
- Directed flow for identified particles()
- Net proton higher moments (ks²)
- Di-lepton production.
- Global Hyperon Polarization
- Multi-strange baryon and Light nuclei production

The goal of BES-II is to turn trends and features into definitive conclusions and new understanding.

BES-II Physics highlights (I): net-proton fluctuations

0-5% Au+Au Central Collisions at RHIC

- System size limits the increase of the correlation length.
- The acceptance needs to be large enough to capture the critical fluctuations. (1-2 units)
 B. Ling and M. Stephanov, Phys. Rev. C93 (2016) 034915

With high statistics, establish a bridge between BES and world program at fixed target (HADES/CBM/NICA/JPARC)

Xiaofeng Luo

BES-II Physics highlights (II): Di-electron measurements

- > Systematically study di-electron continuum from $\sqrt{S_{VN}} = 7.7 19.6$ GeV
- Inner Time Projection Chamber (iTPC) upgrade: reduce systematic and statistical uncertainties
- Distinguish models with different ρ-meson broadening mechanisms (Rapp's method vs. PHSD)
- > Study the total baryon density effect on LMR excess yield.

Summary

- Results from the first Beam Energy Scan at RHIC built the case and defined the best search range for BES-II (2019-2020)
- Key measurements need more data (net-proton fluctuations, v_2 of phi, di-leptons etc.)
- Detector upgrades in progress will extend coverage . Upgrades are on schedule - tight but we can make it.
- FXT program will extend the reach of BES program at high baryon density region.

Run 18-19 well defined and set to produce exciting and definitive results. Stay Tune !

Acknowledgement:

Daniel Cebra, Zebo Tang, Nu Xu, Zhangbu Xu

Xiaofeng Luo