eTOF Scientific Topics Supported by NSFC

Zebo Tang (唐泽波)

University of Science and Technology of China (USTC) State Key Laboratory of Particle Detection and Electronics

CBM-STAR Joint Meeting, 23/09/17, CCNU, China

NSFC International Cooperation Fund

- Funds for International Cooperation and Exchange of NSFC
 - Key International (Regional) Joint Research Project
 - International (Regional) Cooperation and Exchange Programs under Agreements/MOUs between NSFC and foreign partners
 - Research Fund for International Young Scientists
- Key International (Regional) Joint Research Project
 - ~ 100 projects funded per year, success rate ~ 17%
 - 2.5-3 M¥ + \sim 20% indirect costs, 5-years project, \sim 100 k\$/year
 - Eligibility of Foreign Partners: Independent researchers in charge of research laboratories or key research projects abroad
 - STAR successes: *BTOF*, MTD, HLT, iTPC and eTOF
 - CBM success: TOF

The eTOF NSFC project

- Dec. 2016: Plan started (initially suggested by Prof. Feng Liu, supported by Zhangbu et al.)
- 3/15/2017: Proposal submitted to NSFC
- 6/8/2017: Passed 1st round review
- 7/7/2017: 2nd round (fact-to-face) review, 4 out 6 projects from the Department of Math. & Phys. Sciences of NSFC passed
- Title: Study of chiral phase transition and QGP properties during RHIC Beam Energy Scan II
- Period of the project: Jan. 2018 Dec. 2022
- Chinese institutions: USTC and Shandong U.
- Contact of foreign partners: Frank Geurts
- Supported fund: 3M (direct costs) + ~20% (indirect costs)

Exploring the QCD Phase Diagram

LHC and RHIC top energy:

- Properties of QGP
- Partonic flow, parton energy loss ...
- Charm thermalization, quarkonium melting ...

QCD at high baryonic density:

- Onset of QGP
- 1st-order phase transition
- Search for Critical Point
- Chiral phase transition

- Collectivity
- Criticality
- Chirality

The eTOF NSFC project

RHIC-STAR BES II

- BES I measurements important but limited by statistics
- BES II will significantly improved statistics thanks to accelerator and detector upgrades
- The fixed-target program will extend μ_B coverage to ~720 MeV
- 3 Major detector upgrades (iTPC, EPD, eTOF) *iTPC: Part. supported by NSFC EPD: Part. supported by CMoST eTOF: Part. supported by CMoST & NSFC*

Collider Energy	Fixed- Target Energy	Single- beam AGeV	Center- of-Mass Rapidity	μ _в (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721

RHIC-STAR run schedule

Run Year	Collision System and Energy	Physics/ Observables	Detector in operation
2017	p+p @ 500 GeV	Spin	EPD (1/8 th) eTOF prototype
2018	Zr+Zr, Ru+Ru @ 200 GeV Au+Au @ 27 GeV	Dilepton, CME CVE	Full EPDiTPC prototypeeTOF prototype
2019	Au+Au @ 14.5-20 GeV Fixed target	QCD critical point 1 st phase transition CVE, CME	Full iTPC Full eTOF Full EPD
2020	Au+Au @ 7-11 GeV Fixed target	QCD critical point 1 st –order phase transition CVE, CME	
2020+	p+Au, p+p, Au+Au @ 200 GeV	Drell-Yan Longitudinal correlations	FTS FCS

í

CBM/STAR eTOF

CBM/STAR eTOF module

eTOF prototype with MRPC 3b installed to STAR in 2017 USTC:

- Final tuning of MRPC 3b design
- MRPC3b mass production for STAR
- Calibration and performance study

A PhD student sent to Heidelberg

eTOF acceptance

- Collider mode: Extend PID to forward rapidity $(1.1 < \eta < 1.6)$
- Fixed-target mode: Essential for mid-rapidity measurements eTOF extends measurements to forward rapidity and lower energy

Dilepton production in heavy-ion collisions

Dilepton: Penetrating probe

- Provide information deep into system and whole time evolution
 - Pairs with different mass have different physics and probes different time scale
 - Low-mass Range (LMR)
 - ♦ Vector meson modification
 - Intermediate-mass Range (IMR)
 - ♦ QGP thermal radiation
 - ♦ Correlated heavy quarks
 - High-mass Range (HMR)
 - Quarkonium
 - ♦ Drell-Yan process

LMR dilepton probes chiral symmetry

Spontaneous chiral symmetry breaking: Splitting of ρ and a_1 (1260)

Is chiral symmetry restored in the hot medium created in heavy-ion collisions?

Experimental observable: ρ spectral function via dilepton

Chiral symmetry (partially) restoration \rightarrow A broadened ρ spectral function and ultimately the peak structure disappears

LMR dilepton measurements

Dilepton excess at LMR observed from SPS to RHIC

Systematically described by model calculations with in-medium broadened ρ spectral function

Distinguish broadening mechanism

Rapp: Effective many-body theory model PHSD: Microscopic transport dynamic model

Knowing the mechanism that causes in-medium ρ broadening is fundamental to our understanding and assessment of chiral symmetry restoration in hot QCD matter

LMR dilepton yield

LMR dilepton emission rate depends on:

- Temperature
- Total baryon density
- Lifetime

Normalized excess yield proportional to lifetime from 17.3 to 200 GeV

LMR dilepton at BES II

 Structureless mass distribution would form the last piece of evidence of chiral symmetry restoration

Zebo Tang (USTC)

LMR dilepton vs. rapidity

Significant change of (relative) total baryon density from mid-rapidity to forward rapidity

eTOF enable the measurements at forward rapidity Provides for independent observable to study baryon-density dependence of LMR enhancement

LMR dilepton vs. energy

BES II fixed-target:

- New data at energy < 7.7 GeV
- Temperature effect?
- QGP turn-off effect?

Search for critical point? Critical point

- \rightarrow Increase of lifetime
- \rightarrow Increase of LMR dilepton yield

IMR dilepton: QGP thermometer?

Chiral magnetic/vortical effects

Strong *B* and global *L* in noncentral heavy-ion collisions

+ chiral symmetry restoration
+ topological charge fluctuation
→ CME and CVE

Similarly, CVE will result in baryon number separation

Charge separation due to CME

Hyperon global polarization

"Quantitative estimates of extreme vorticity yield a more complete characterization of the system and are crucial input to studies of phenomena related to chiral symmetry restoration that may provide insight into the complex interactions between quarks and gluons."

Prospective in BES II

Precision will be significantly improved in BES II

- Number of events
- Event Plane Detector (EPD)

Quantifying magnetic field and vorticity of the medium

Will the global polarization keep increasing below 7.7 GeV? Fixed-target will provide a unique opportunity

Global polarization vs. rapidity

CBM-STAR Joint Meeting, 23/09/17, CCNU, China

Summary

- The NSFC project will support eTOF construction and experimental and theoretical study of dilepton production and hyperon global polarization at BES II
- eTOF will significantly improve the precision of these two measurements
- And extend the measurements to forward rapidity and lower energy (together with Fixed-target)
- Money will be there, let's get our jobs done.

Thanks!

Backup slides

Rapidity dependent μ_B

Proton: flat rapidity distribution

Anti-proton: decreasing rapidly

 μ_B increases with rapidity

~50 MeV from mid- to forward rapidity

Experiments for dense baryonic matter

Observables for dense baryonic matter

Onset of Deconfinement:

- NCQ scaling of elliptic flow
- High-p_T suppression
- Strangeness enhancement

1st order phase transition:

- Directed flow
- Volume and tilt angle of HBT
- Width of pion rapidity distributions
- Zero-crossing of elliptic flow
- Volume measurements from Coulomb potential

Criticality:

- Higher moments
- Particle ratio fluctuation

Chirality:

- Dilepton studies
- CME, CMW, CVE etc

BES II

•	Most BES I measurements limited by
	statistics and systematics

• BES II will significantly improved statistics via upgraded accelerator and detectors

Collider Energy	Fixed- Target Energy	Single- beam AGeV	Center- of-Mass Rapidity	μ _в (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721

STAR detector upgrade

inner TPC upgrade

Endcap TOF

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- \bullet Extends η coverage to
- 1.5 (2.2 for FXT)
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at forward rapidity
- Allows higher energy range

of FXT program

- CBM/STAR
- Ready 2019

EPD Upgrade:

Event Plane Detector

- Improves trigger
- Reduces background

• Allows a better and independent reaction plane measurement critical to BES and FXT

• Ready 2018

CBM-STAR Joint Meeting, 23/09/17, CCNU, China

Fixed-target test run

eTOF MRPC prototypes

- Thin float glass electrodes
 - 0.28 mm
- Impedance matching
 - 50 Ω
- Double-end strip readout
 - 7 mm strip + 3 mm gap = 1 cm pitch
- Differential signals to PADI
- Active area
 - 32 cm \times 27.6 cm
- Detector size
 - 354 imes 324 imes 22 mm
- Double stacks

STAR eTOF module

- 3 MRPCs (MRPC3a/b) tilted by $\approx 7^{\circ}$
- 32 strips/MRPC with a pitch of 1 cm
- 27 cm strip length
- Active area about 92 cm × 27 cm
- 192 read out channels

Shorten for eTOF

Preamplifier PADI boards

CBM-STAR Joint Meeting, 23/09/17, CCNU, China

STAR eTOF Wheel

A conceptual design

- 36 modules
- 3 layers
- 12 sectors
- 6912 channels
- Sector counting matches the TPC sectors
- Total depth about 14.2" (36 cm)

eTOF prototype installed in STAR

Open module

Module fixed at the pole-tip

Integrated in STAR system (gas, mechanical, electronics, software) Data taken in run 2017 (~100M)

Mass production procedure at USTC

Setup in 2018

One full sector

- 10 module produced
 @USTC
 as pre-mass production
- Cosmic ray test
 @USTC ongoing
- 1 PhD student sent to Heidelberg

eTOF support structure

Pre-final review of the eTOF support structure on July 13, 2017

CBM-STAR Joint Meeting, 23/09/17, CCNU, China

PID capability (*a*) **Collider mode**

CBM-STAR Joint Meeting, 23/09/17, CCNU, China

PID capability **(a)** Fixed-target mode

Covers mid-rapidity at fixed-target mode

- iTPC+eTOF: 1.52<η<2.24 ٠
- **TPC+BTOF**: 0<η<1.47 •

p_T (GeV/c)