The Panda Coil

Toward a Reasoned Design.

R.Parodi. Panda Collaboration Meeting 2

Meeting

A possible Cable (from a cable producer)

Schematic cross section of Aluminium Stabilized Cable

Torino,16 May 2009

Outline Specification of Aluminium Stabilized Cable for the PANDA Solenoid

The Furukawa Electric Co., Ltd. Date : February 11, 2009 Spec. No. : SEH-0902A

ltem		Unit	Specification
Supeconducting	Diameter (in finished conductor)	mm	0.90±0.03
Strand	Superconducting material		Nb-47wt%TI
	Stabilizer material		Oxygen free copper
	Cu/NbTI ratio		1.1±0.1 / 1
	Filament clameter (in finished conductor)	μm	27 nominal
	Number of filament		620 nominal
	Twist pitch (in finished conductor)	mm	27 nominal
	Twict direction		Left hand corew (8)
	RRR of Copper (in finished conductor)		≧,60 (Extracted)
	Critical ourrent at 6.8T, 4.2K (in finished conductor)	A	≧693 (Extracted)
Supeconducting	Number of strands	pos	16
Rutherford Cable	Thickness (in finished conductior)	mm	1.70 nominal
	Width (in finished conductor)	mm	7.04 nominal
	Transposition pitch (in fisnished conductor)	mm	105 nominal
	Transposition direction		Right hand corew (Z)
	Packing factor	*	86 nominal
Aluminium Stabilized	Manufacturing method		Co-extrusion
Conductor	Material		5N-Al (≧99.889% purity)
	Thiokness	mm	3.40±0.05
	Width	mm	24.80±0.05
	Corner radius	mm	0.35±0.05
	Al/Cu/NbTI ratio		18.2 / 1.1 / 1
	Critical ourrent at 6.6T, 4.6K	А	≥10,000
	Critical current at 6.6T, 4.2K	А	≥11,080
	RRR of Aluminium		≥1,000
Insulation	Insulation of conductor		None
Other Items	Pleas length	m	A) ≧1,700 , B) ≧900
	Pleas number	pos	A) 4 , B) 2
	Total length	m	≥8,600
	Shipping speel		TBD
	Packing material		TIBD

The Intracoil Splices

Two side by side S/C cables Tig-Welded together on ~3 metres length

R~ 10⁻¹⁰ W At Least (Babar, Atlas, CMS)

Torino,16 May 2009

The Coil Former

The Coil Suspensions

Titanium Grade 5 alloy Rods

Unsimmetrical suspension to keep to a minimum the displacement of the Target Vias during the Cool Down.

The Dowstream Tie Rods keep the net axial force Upstream produced by the Unsimmetric Iron distribution and by 10mm misalignement effect in the Coil Position

(safety factor 3)

Axial Force plot Force Plot

Torino,16 May 2009

R.Parodi. Panda Collaboration Meeting

11

Tie Rods design.

Torino,16 May 2009

R.Parodi. Panda Col Meeting

Coil Thermal Budget

- Symmetry in the coil longitudinal cuts
- Fixed temperature (50K) at the tie Rod Intercepts
- Fixed temperature (4.5K) on the outer surface of the coil loops.
- Distributed heat Load 0.07 W/m² on the whole surface of the coil to account for the radiation heat
- A insulation boundary condition at the coil-Coil-Former interface corresponding to an epoxy glass layer 1 mm thick using the Temperature dependent thermal conductivity values at low temperature for the composite..
- Anisotropic Thermal properties of the coil windings to account for the different thermal conductivity in the Axial, radial and Azimuthal directions.
- The heat load is increased by a factor 2 (0.14 W/m2) on the end flanges of the Coil, and by a factor 3 (0.21 W/m2) in the Bore of the target insertion

Heath Flux from suspensions

Termal Input 0.13Watt per Axial Rod (x8) 0.07Watt per Radial Rod(x16) 1.4785e+003 1.3861e+003 1.2937e+003

Q[W/m^2]

1.2013e+00

Meeting

Tie Rods Prototypes.

We measured 0.14±10% Watt in the Axial Rod Test 0.06±5% Watt Radial Rod

xial

Radial

Conflicts with the existing design??

- Minor Clashes In the Chimney to Cryostat Connection – Junction Box
- Few more centimetres in the Iron Chimney aperture will be very usefull.
- Some space is needed around the Cylindrical box outside of the Iron, In the Target Forepump region.

