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echy. What is structure preservation, and why is
it important?

® Structure = invariants

¢ Integrals of motion (energy, momentum, ...),
motion lies on topological circules

¢ Differential (Poincare invariants, including
Liousville = volume) regions neither expand nor
contract

® Structure preserving integration:
+ Preserve an invariant exactly, even though
integrator is accurate to only a certain order
® Structure preserving integration can
+ Require less computational work
+ Better preserve other integral invariants
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TECH-X :
Outline

* Symplectic integration

® Motion in EM fields (absence of a general
symplectic integrator)

® Boris push

® Spatial Boris push (muon collider sims) &
numerical results

® Volume preservation

®*Vay push preserves ExB motion

® Higuera-Cary push preserves ExB and volume

®* Numerical results
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echy: ong been a belief in need for symplectic
integration

®* Hadron beams propagating in accelerator lattice:
collection of single particle Hamiltonian systems,
neglecting radiation, collisions, self-fields

® Courant-Snyder invariants: transverse and
longitudinal actions conserved: invariant actions

® Perturbations are always present
+ Lattice errors
¢ Sextupoles (chromaticity)

* KAM theorem: Tori of invariant actions are
preserved by small perturbations



29
x

TECH-X
Simple example: Euler versus leap frog

dx B dp

I 2
dt _ Po ar

—w"X

* Not Symplectic (Euler — diverges, long-time
exponentially unstable)

x(At) = xg + pAt
0 Po J =1+ (wAt)?
p(At) = po — wx,At

* Symplectic (Leap frog, product of symplectics)

x(At) = xy + pAt p(At) = p, — w?x(At)
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ecny: AN integrator is a solution of the equations
of motion valid to some order

® Canonical momentum, p  gx,t) B(xt)
® Kinetic momentum, u

_ q=m=c¢= 1
* Propagation

® Lorentz force Xx=(p—A)/y=v(u)
u=p-—-A
u=E+ VvxB

X(At) = X + AX(Xg, Po, At) + O(At?)

p(At) = po + Ap(Xg, Po, At) + O(AL?)
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ey, A symplectic integrator: the solution is
exactly a canonical transformation

x(At) = xy + Ax(Xq, pg, At)
P(At) = po + Ap(Xo, Po, At)

axi axj axi axj

dox; Opj  0dx; Opj

=0 =0

0Xg . dpo dpo . dxXg B Jxg . dpo dpo . dxg L

®* And two more relations

® To be a symplectic integrator, the above relations

must hold exact[y Ruth, Nuclear Science., IEEE Trans. on. (1983)
Forest and Ruth; Yoshida (1990)

Candy and Rozmus (1991)
®* The expression in terms of kinetic momenta is more

complicated: non-canonical Poisson brackets

Littlejohn (1987)
Cary, Littlejohn (1983)
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recny: 1he KAM theorem indicates stability of
numerical integration

®* One symplectic transformation (the actual
motion)

® Another symplectic transformation (the
numerically found trajectory)

* With a small perturbation, invariant tori with
sufficiently irrational tunes of the first survive in
the second

® Find a numerical integration method that, while
only approximate, is symplectic exactly, then for
sufficiently small time step, it will behave for long
times like the actual system
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Operator splitting: path to second order

x=v(u) =u/y X = X, + VAt
u=E+vxB Ax = VAL

® Integrate the first equation holding u constant

® Integrate the second equation holding x constant —
cannot be done if E and B are time varying

® Cannot be done in a simulation when variation of E,
B depend on particle motion

*Know E, B at a given time, find change in u by time-
centered difference (implicit)
Au = (E + VxB)At
® Average so far unspecified
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ecny: Plasma simulation long relied on the

“Boris push”
o | Au = (E + ¥xB)At
® Operator splitting again 1
+ Half acceleration u_ =up +-EAL
+ Rotation (y=constant) u, +u_
+ Half acceleration - =Ty xBat
®* Time centered as starts and 1

llf = U4 + EEAt

ends with half acceleration
* Unconditionally stable
® Good results since 1971!

® Universal among PIC codes
(Vorpal, Osiris, Warp, ...)
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ey Opatial analog found in PR ST/AB 5,
094001 (2002)

®* Muon collider (Fernow) relied on Runge-Kutta-4
for integration.

® Goal: is there emittance transfer through
lonization cooling?

® Problem: is there cooling simply due to the
integration

® Boris push modified (Stoltz et al) for spatial
integration (tracking) by interchange

Loz Y © Dz
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ey Opatial Boris eliminated numerical,

unphysical cooling
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FIG. 1. The gyroradius (normalized to its initial value) as a
function of distance (normalized to the gyroperiod) calculated
using the fourth-order Runge-Kutta integration scheme. Plots
are shown for step sizes of 5, 7.5, 10, and 20 steps per gyrope-
riod. The curves for perpendicular momentum as a function of
distance are similar to these.

RK4 (4t order) vs Spatial Boris (29 order)
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ey Opecial property of Boris push: volume
preservation

*NOT symplectic, yet still very good
® Boris push is volume preserving (Qin, 2015) as it
Is the successive application of
+ Translation in space
+ Half translation in momentum
¢ Sheared rotation in momentum
+ Half translation in momentum
* All of which are volume preserving

® But spectral methods have long existed: Cary

Doxas, "An Explicit Symplectic Integration Scheme for
Plasma Simulations," J. Comp. Phys. 107 (1) 98-104

(1993) shows how to also get low noise, PIC
algorithmic scaling
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recHy; For self-consistent beams, want to
preserve ExB balance

®* Beam nonequilibrium between E and jxB forces

® Constant focusing model, add in extra “electric
field”
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echy: 1he general push can be thought of as a
time-centered acceleration

Au = (E + ¥xB)At

i v(u;+ %EAt) +v(uy - %EAt)
VBoris = 5
® Boris is the above average which corresponds to
the translation, rotation, translation, for which the
equations were solved long ago.
® But there is no steady solution
Au= (E+vgxB) =0
® Either vg ; = 0 (not true for intense beams)
®*Or u+EAt/2 = u-EAt/2 or E = 0 (also not true for
relativistic, intense beams)

® Generally, no steady solution




29
x

echy: 1he Vay push uses the average of the
velocities

Au = (E 4+ ¥xB)At

_ v(u;) + V(llf)
Vyay = 2

® Average the velocities

®* Allows equilibrium solution

® Zero change gives
E+V,xB=E+VxB=0
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echy: From Higuera-Cary paper: Center the

momentum
Au = (E + VvxXB)At
_ U; + Uf
VHC = V( 2 )

®* Compute velcity at average of kinetic momenta
* Allows equilibrium solution
® Zero change gives

E+‘_7H6XB:O
E + ¥;xB = E + V;xB = 0
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To study volume preservation, break step
into two parts

Au = (E + vxXB)At
e =v(*5)
ur =u+ (E+ v(@a)xB)At/2 u=u; + (E+v(u)xB)At/2
*HC: implicit step followed by explicit step
® Volume preservation follows:

+ Jacobian from initial to average is inverse of

Jacobian from average to initial, which is the
inverse of the same function from average to final.

QED.
®Vay turns out to be opposite: explicit followed by
implicit. But volume preservation does not follow
because evaluated at different kinetic momenta

TECH-X
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ey Only integrator of Higuera-Cary paper
meets both desired criteria

All of these integrators have the same accuracy order, but
they have different properties regarding exact preservation of
differential and integral invariants

Integrator Exactly Volume Exactly preserves
preserving equilibrium

Boris v No
Vay No v
Higuera and Cary v v
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recny: Maximum effect is moderately relativistic
with some E parallel to B

® Vay non-volume-conservation:

J(xo,u0) J(x1,u1) J(TN_1,uN-1)

Jo,B = |
QVVh | J(x()?ul) J(xl7u2) J(CUN_l,uN)
o 52 + (g ﬂnew)2
Jf,new =1+ 74 .
3 = ﬁAt,
2m

* Important where both B and u change
+ B changes from position change
+ U changes to prevent telescoping
+ Moderately relativistic (compare with changes)
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eeny; Ourfaces of section find that Vay has much
larger islands, but basically still integrable

® One model problem
E = Ey(2)2 A= A.(y)2.
B = B,(y)i,
H = \/1 + P2+ P2+ (p. — A (y)? + ¢()
® Invariants in involution: pz, 1, =p? + (p. — A.(y))?
® Surface of section (islands! Chaotic motion?)
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Many more issues to explore

®* What happens in the self-consistent (evolving
fields) context?

® Could this be a problem in tracking/self-
consistent codes?

® Others are right now looking at this in time-

domain codes.
Hi John,
Sorry for my late response. Have been swamped this week.
Only glanced at it but looks like a great new particle pusher.
Likely that we will implement and test it soon.
Best, Jean-Luc
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Summary and conclusions

®* While the KAM theorem can be proven for only
symplectic integrators, particular cases provide
evidence that volume preservation is sufficient
+1.5D they are the same

+ Stability seen in spatial tracking studies relevant to muon
collider

® Exact beam equilibrium calculations pose additional
requirement

®* A new integrator has been found to satisfy both

®* These dual requirements are not being satisfied by
“space-charge-tracking” codes?

* How do we verify that existing computations are giving
theright answer for truly intense beams?



