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What is structure preservation, and why is 
it important?

•Structure = invariants
u Integrals of motion (energy, momentum, …), 

motion lies on topological circules
uDifferential (Poincaré invariants, including 

Liousville = volume) regions neither expand nor 
contract

•Structure preserving integration:
uPreserve an invariant exactly, even though 

integrator is accurate to only a certain order
•Structure preserving integration can

uRequire less computational work
uBetter preserve other integral invariants
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Outline

•Symplectic integration
•Motion in EM fields (absence of a general 

symplectic integrator)
•Boris push
•Spatial Boris push (muon collider sims) & 

numerical results
•Volume preservation
•Vay push preserves ExB motion
•Higuera-Cary push preserves ExB and volume
•Numerical results
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Long been a belief in need for symplectic 
integration

•Hadron beams propagating in accelerator lattice: 
collection of single particle Hamiltonian systems, 
neglecting radiation, collisions, self-fields

•Courant-Snyder invariants: transverse and 
longitudinal actions conserved: invariant actions

•Perturbations are always present
uLattice errors
uSextupoles (chromaticity)

•KAM theorem: Tori of invariant actions are 
preserved by small perturbations
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Simple example: Euler versus leap frog

•Not Symplectic (Euler – diverges, long-time 
exponentially unstable)

•Symplectic (Leap frog, product of symplectics)
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𝑥 ∆t = 𝑥% + 𝑝0∆𝑡 𝑝 ∆t = 𝑝0 − ω2𝑥(∆𝑡)

𝑥 ∆t = 𝑥% + 𝑝0∆𝑡

𝑝 ∆t = 𝑝0 − ω2𝑥0∆𝑡

𝑑𝑥
𝑑𝑡 = 𝑝0

𝑑𝑝
𝑑𝑡 = −𝜔1𝑥

𝐽 = 1 + 𝜔∆𝑡 1



An integrator is a solution of the equations 
of motion valid to some order 

•Canonical momentum, p
•Kinetic momentum, u 
•Propagation
•Lorentz force
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𝐄(𝐱, 𝑡) 𝐁(𝐱, 𝑡)

𝐱̇ = (𝐩 − 𝐀)/γ ≡ 𝐯(𝐮)

𝐮̇ = 𝐄 + 𝐯×𝐁

𝐮 ≡ 𝐩 − 𝐀

𝑞 = 𝑚 = 𝑐 = 1

𝐱 ∆t ≡ 𝐱% + ∆𝐱 𝐱%, 𝐩%, ∆𝑡 + O(∆𝑡1)

𝐩 ∆𝑡 ≡ 𝐩% + ∆𝐩 𝐱%, 𝐩%, ∆𝑡 + O(∆𝑡1)



A symplectic integrator: the solution is 
exactly a canonical transformation

•And two more relations
•To be a symplectic integrator, the above relations 

must hold exactly

•The expression in terms of kinetic momenta is more 
complicated: non-canonical Poisson brackets
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𝐱 ∆𝑡 ≡ 𝐱% + ∆𝐱 𝐱%, 𝐩%, ∆𝑡
𝐩 ∆𝑡 ≡ 𝐩% + ∆𝐩 𝐱%, 𝐩%, ∆𝑡
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I EFJ
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= 0 EFG
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I EKJ
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− EFG
E𝐩H

I EKJ
E𝐱H

= 𝛿M,N

Ruth, Nuclear Science, IEEE Trans. on. (1983)
Forest and Ruth; Yoshida (1990)
Candy and Rozmus (1991)

Littlejohn (198?)
Cary, Littlejohn (1983)



The KAM theorem indicates stability of 
numerical integration

•One symplectic transformation (the actual 
motion)

•Another symplectic transformation (the 
numerically found trajectory)

•With a small perturbation, invariant tori with 
sufficiently irrational tunes of the first survive in 
the second

•Find a numerical integration method that, while 
only approximate, is symplectic exactly, then for 
sufficiently small time step, it will behave for long 
times like the actual system
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Operator splitting: path to second order

• Integrate the first equation holding u constant
• Integrate the second equation holding x constant –

cannot be done if E and B are time varying
•Cannot be done in a simulation when variation of E, 

B depend on particle motion
•Know E, B at a given time, find change in u by time-

centered difference (implicit)

•Average so far unspecified
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𝐱̇ = 𝐯 𝐮 = 𝐮/𝛾
𝐮̇ = 𝐄 + 𝐯×𝐁

𝐱 = 𝐱% + 𝐯∆𝒕
∆𝐱 = 𝐯∆𝒕

∆𝐮 = (𝐄 + 𝐯Q×𝐁)∆𝒕



Plasma simulation long relied on the 
“Boris push”

•Operator splitting again
uHalf acceleration
uRotation (g=constant)
uHalf acceleration

•Time centered as starts and 
ends with half acceleration

•Unconditionally stable
•Good results since 1971!
•Universal among PIC codes 

(Vorpal, Osiris, Warp, …)
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∆𝐮 = (𝐄 + 𝐯Q×𝐁)∆𝑡

𝐮R = 𝐮𝟎 +
1
2𝐄∆𝑡

𝐮𝒇 = 𝐮U +
1
2𝐄∆𝑡

𝐮U − 𝐮R =
𝐮U + 𝐮R
2𝛾 ×𝐁∆𝑡



Spatial analog found in PR ST/AB 5, 
094001 (2002) 

•Muon collider (Fernow) relied on Runge-Kutta-4 
for integration.

•Goal: is there emittance transfer through 
ionization cooling?

•Problem: is there cooling simply due to the 
integration

•Boris push modified (Stoltz et al) for spatial 
integration (tracking) by interchange
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𝑡 ↔ 𝑧 𝛾 ↔ 𝑝X



Spatial Boris eliminated numerical, 
unphysical cooling

RK4 (4th order)  vs Spatial Boris (2nd order)
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PRST-AB 5 P.H. STOLTZ et al. 094001 (2002)

(6) Push the generalized positions one-half step using
the velocities at zn11.
The above steps require only one evaluation of the fields.

One can combine steps (1) and (6) for efficiency, but the
positions are then known one-half step off from the mo-
menta. By keeping steps (1) and (6) separate, one knows
the generalized positions and momenta at the same spatial
location at the end of a step.

III. SIMULATIONS IN A UNIFORM SOLENOID
FIELD

The RK scheme is known to produce artificial damp-
ing (or growth) of conserved quantities (see Fig. 3 of
Ref. [5]). Because the spatial-Boris scheme is a leapfrog-
like scheme, we expect it to have improved conservation
properties in the same way as symplectic integrators [6].
As a first test of this, we chose the problem of motion
of a particle in a uniform solenoid field. For this problem,
the gyroradius and perpendicular momentum are conserved
quantities. The gyroradius is

rg !
yp

yz
k21, (31)

where yp is defined by

yp !
q

y2
x 1 y2

y !
pp

gm
, (32)

and pp is the perpendicular momentum.
Figure 1 shows the radius as a function of distance for

various step sizes for simulations using the RK scheme. In

FIG. 1. The gyroradius (normalized to its initial value) as a
function of distance (normalized to the gyroperiod) calculated
using the fourth-order Runge-Kutta integration scheme. Plots
are shown for step sizes of 5, 7.5, 10, and 20 steps per gyrope-
riod. The curves for perpendicular momentum as a function of
distance are similar to these.

this figure, the gyroradius is normalized to its initial value
and the distance of integration to the gyroperiod. This
figure shows that the RK scheme produces artificial decay
of the gyroradius, as expected from the results of Ref. [5].
The RK scheme also produces a decay in the perpendicular
momentum. The curves of perpendicular momentum as a
function of distance for the various step sizes are similar
to those for the gyroradius, so we do not show them here.
Figure 2 shows on a log-log plot the fractional error ver-

sus step size after one gyroperiod. The error scales as
Dz5!Z5

g. For a fourth-order integrator, one might expect
the error for a fixed integration distance to scale as Dz4.
This is because one might expect the error in a single step
would go as estep " Dz5, and for a fixed distance of in-
tegration, the number of steps goes as N " Dz21. This
implies the error would scale as e ! Nestep " Dz4. How-
ever, the coefficients for a single step of the RK scheme
produce a coincidental cancellation of the fifth-order er-
ror in the calculation of the radius (see Appendix A). So,
the error in calculation of the radius in a single step in
fact goes as estep " Dz6, and so the total error goes as
e ! Nestep " Dz5, as shown in Fig. 2.
In contrast, for simulations using the spatial-Boris

scheme, the gyroradius and perpendicular momentum are
perfectly conserved for any step size. The full calculation
of these quantities for a single step of the spatial-Boris
integrator is shown in Appendix B. To demonstrate this
conservation, Fig. 3 shows the radius as a function of
distance for various step sizes for simulations using the
spatial-Boris scheme. Figure 3 also shows the perpen-
dicular momentum as a function of distance using the
spatial-Boris integration scheme. These plots are put on

FIG. 2. The fractional error in the gyroradius after one gy-
roperiod as a function of steps per period using the Runge-Kutta
scheme. The slope of the line is consistent with the error in the
radius in a single step of the Runge-Kutta being sixth order.
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PRST-AB 5 EFFICIENCY OF A BORIS-LIKE INTEGRATION… 094001 (2002)

FIG. 3. The gyroradius and perpendicular momentum (normal-
ized to their initial values) as a function of distance (normalized
to the gyroperiod) calculated using the spatial-Boris scheme.
These are plotted for a step size of five steps per gyroperiod.
These quantities are perfectly conserved for any step size using
the spatial-Boris scheme.

the same vertical scale as Fig. 1 for comparison, however
the integration distance is many hundreds of times farther
for the spatial-Boris simulations to demonstrate the
conservation. The perfect conservation of rg and pp is
not shown definitively by Fig. 3, but a detailed analysis
does show the errors in rg and pp are zero to within the
double-precision accuracy of the data analysis tool we
used. Furthermore, we show rg and pp for a step size
of five steps per period in Fig. 3, as this was the largest
step size used in the Runge-Kutta analysis, and therefore

should be a worst case. The perfect conservation does
hold for all step sizes however.
While the spatial-Boris scheme is good at preserving

conserved quantities, it is still only a second-order inte-
gration scheme and does produce errors. In this case, the
scheme introduces phase error. The phase for this case is
defined as

tan!u" !
y
x

, (33)

where u is the phase. One can show the error in phase
introduced by the spatial-Boris scheme by considering the
special case of initial conditions x ! x0, y ! 0, px ! 0,
and py ! 2kx0. For a single step, the phase should be
u ! 2p!Dz#Zg" ! kDz, which gives to third order (using
the notation d ! kDz):

tan!u" ! tan!d" $ 2

µ

d 1
d3

3

∂

. (34)

The minus sign is due to the clockwise rotation. However,
following the evolution (see Appendix B) through one step
of the spatial-Boris scheme gives

y
x

!
22! d

2 "
1 2 !d

2 "2
$ 2

µ

d 1
d3

4

∂

. (35)

The spatial-Boris scheme produces a phase slightly smaller
than the true phase, meaning the calculated rotation is too
slow. The phase error due to the spatial-Boris scheme is
third order inDz, as expected for a second-order integrator.
Integrated over an entire period, the spatial-Boris scheme
introduces an error in the gyroperiod that is second order
in Dz.
However, Boris [1] points out that replacing d#2 with

tan!d#2" in Eqs. (22)–(27) will correct the phase error to
all orders. The motivation for this modification is seen in
Eq. (35), where making the replacement yields the trigono-
metric identity

y
x

!
22 tan!d

2 "
1 2 tan2!d

2 "
! tan!d" . (36)

Boris refers to this as the tan!a"#a modification. Because
to first order tan!d#2" ! d#2, and the next term is third
order in d#2, the modification to the step size is third order
and so does not affect the order of accuracy of the individ-
ual positions or momenta. For simulations in a uniform
magnetic field, where gyromotion is the dominant motion,
the tan!a"#a modification is clearly an improvement over
the unmodified scheme. For simulations in spatially vary-
ing fields, this modification changes the spatial dependence
of the coefficients in Eqs. (22)–(27) and changes the ef-
fective step size. Dynamically changing the step size in a
leapfrog scheme has been shown [7] to introduce a secular
error in conserved quantities, so applying the tan!a"#a
modification to spatially varying fields must be done
with care.
The conservation properties of the spatial-Boris scheme

make it almost certainly the more efficient integrator for

094001-5 094001-5



Special property of Boris push: volume 
preservation

•NOT symplectic, yet still very good
•Boris push is volume preserving (Qin, 2015) as it 

is the successive application of
uTranslation in space
uHalf translation in momentum
uSheared rotation in momentum
uHalf translation in momentum

•All of which are volume preserving
•But spectral methods have long existed: Cary 

Doxas, "An Explicit Symplectic Integration Scheme for 
Plasma Simulations," J. Comp. Phys. 107 (1) 98-104 
(1993) shows how to also get low noise, PIC 
algorithmic scaling
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For self-consistent beams, want to 
preserve ExB balance

•Beam nonequilibrium between E and jxB forces
•Constant focusing model, add in extra “electric 

field”
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The general push can be thought of as a 
time-centered acceleration

•Boris is the above average which corresponds to 
the translation, rotation, translation, for which the 
equations were solved long ago.

•But there is no steady solution

•Either vB,|| = 0 (not true for intense beams)
•Or u+EDt/2 = u-EDt/2 or E = 0 (also not true for 

relativistic, intense beams)
•Generally, no steady solution
20170316 SIMULATIONS EMPOWERING YOUR 
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∆𝐮 = (𝐄 + 𝐯Q×𝐁)∆𝒕

𝐯Q𝑩𝒐𝒓𝒊𝒔 =
𝐯 𝐮𝒊 +

1
2𝐄∆𝑡 + 𝐯 𝐮𝒇 −

1
2𝐄∆𝑡

2

∆𝐮 ⇒ 𝐄 + 𝐯Q_×𝐁 = 0



The Vay push uses the average of the 
velocities

•Average the velocities
•Allows equilibrium solution
•Zero change gives
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∆𝐮 = (𝐄 + 𝐯Q×𝐁)∆𝒕

𝐯Q𝑽𝒂𝒚 =
𝐯 𝐮𝒊 + 𝐯 𝐮𝒇

𝟐

𝐄 + 𝐯Qd×𝐁 = 0

𝐄 + 𝐯QM×𝐁 = 𝐄 + 𝐯Qe×𝐁 = 0



From Higuera-Cary paper: Center the 
momentum

•Compute velcity at average of kinetic momenta
•Allows equilibrium solution
•Zero change gives
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∆𝐮 = (𝐄 + 𝐯Q×𝐁)∆𝒕

𝐯Q𝑯𝑪 = 𝐯
𝐮𝒊 + 𝐮𝒇
𝟐

𝐄 + 𝐯Qhi×𝐁 = 0

𝐄 + 𝐯QM×𝐁 = 𝐄 + 𝐯Qe×𝐁 = 0



To study volume preservation, break step 
into two parts

•HC: implicit step followed by explicit step
•Volume preservation follows:

uJacobian from initial to average is inverse of 
Jacobian from average to initial, which is the 
inverse of the same function from average to final.  
QED.

•Vay turns out to be opposite: explicit followed by 
implicit.  But volume preservation does not follow 
because evaluated at different kinetic momenta
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∆𝐮 = (𝐄 + 𝐯Q×𝐁)∆t

𝐯Q𝑯𝑪 = 𝐯
𝐮𝒊 + 𝐮𝒇
2

𝐮j = 𝐮k + 𝐄 + 𝐯 𝐮k ×𝐁 ∆𝑡/2 𝐮k = 𝐮M + 𝐄 + 𝐯(𝐮k)×𝐁 ∆𝑡/2



Only integrator of Higuera-Cary paper 
meets both desired criteria

Integrator Exactly Volume 
preserving

Exactly preserves
equilibrium

Boris ✔ No
Vay No ✔

Higuera and Cary ✔ ✔
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All of these integrators have the same accuracy order, but 
they have different properties regarding exact preservation of 

differential and integral invariants



Maximum effect is moderately relativistic 
with some E parallel to B

•Vay non-volume-conservation:

•Where

• Important where both B and u change
uB changes from position change
uu changes to prevent telescoping
uModerately relativistic (compare with changes)
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can be solved to give

~Y =
~u
new

� ~� ⇥ ~u
new

/�
new

+ ~�~� · ~u
new

/�2
new

1 + �2/�2
new

, (37)

which can be used in Eq. (34) and ultimately with Eqs. (32 and 33) to obtain

J
f,new

= 1 +
�2 + (~� · ū

new

)2

�4
new

. (38)

By an identical process, one can show that

J
i,new

= 1 +
�2 + (~� · ū

new

)2

�4
new

. (39)

Thus, the Jacobian of the first half step equals the inverse of the Jacobian for the second half step, and so their
product is unity, and the new integrator is volume-preserving, just like the Boris integrator.

The Vay integrator can be analyzed in this same way. It can likewise be composed into two half steps, but with
the first being an explicit step using u

i

/�
i

followed by an implicit step using u
f

/�
f

. As a result the full Jacobian for
the Vay integrator is

J
v

=
J(x

i

, u
i

)

J(x
i

, u
f

)
, (40)

where

J(x, u) = 1 +
�2 + (~� · ~u)2

�4
.. (41)

Consequently, after N steps, the di↵erential volume element in the Vay integrator is

J
v,B

=
J(x0, u0)

J(x0, u1)

J(x1, u1)

J(x1, u2)
...
J(x

N�1, uN�1)

J(x
N�1, uN

)
, (42)

Because the two Jacobians in any of the fractions of Eq. (42) depend on di↵erent variables (the initial and final
momenta) while having the same functional form, the Vay integrator is not generally volume-preserving. At subsequent
steps, the di↵erential volume grows or shrinks by a similar factor, but now evaluated at the new position. The function,
J(x, u) varies over space but is bounded for bounded regions. Hence, generally the factors in Eq. (42) are variously
greater and less than unity. While one could imagine a trajectory that conspires to have all factors either greater or
less than unity, we have not so far been able to construct such a case. In the case where the magnetic field is constant
in space and time, the series telescopes and then the boundedness of J(x, u) prevents the existence of attractors or
repellers.

VI. Numerical results

We choose a test problem of the form,

~E = E
x

(x)x̂ (43)

~B = B
x

(y)x̂, (44)

for which

~A = A
z

(y)ẑ. (45)

The Hamiltonian for this system is

H =
q

1 + p2
x

+ p2
y

+ (p
z

�A
z

(y))2 + �(x) (46)
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new

)2

�4
new

. (38)

By an identical process, one can show that

J
i,new

= 1 +
�2 + (~� · ū
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(y)ẑ. (45)

The Hamiltonian for this system is

H =
q

1 + p2
x

+ p2
y

+ (p
z

�A
z

(y))2 + �(x) (46)

3

Ideally one would like to solve this equation in a way that preserves as many properties of the underlying di↵erential
equations as possible. In this paper we consider the following properties: (1) Energy should be conserved in the absence
of an electric field. (2) The static solution for crossed electric and magnetic fields, with | ~E| < c| ~B|, should be constant
velocity in the third direction of magnitude | ~E|/| ~B|. (3) The di↵erential volume, which is preserved by any solution
of the di↵erential equation, should be preserved by the finite-time-step solution.

The standard way to obtain a second-order solution is by time centering. That is, one uses the solution,

~u
f

= ~u
i

+�~u with (5)

�~u = (q/m)( ~E + v̄ ⇥ ~B)�t, (6)

where v̄ is an average of the initial and final values of ~v. There are multiple choices for how to do the average. Here
we introduce a new choice,

v̄
new

⌘ ~v

✓
~u
i

+ ~u
f

2

◆
. (7)

while [2] made the choice,

v̄
v

⌘ ~v(~u
i

) + ~v(~u
f

)

2
(8)

and the Boris choice is,

v̄
b

⌘ ~v (u
i

+ ~✏) + ~v (u
f

� ~✏)

2
. (9)

where

~✏ ⌘ q ~E

2m
�t. (10)

The Boris push is not usually written in this way, but one can see that Eq. (9) is equivalent to a magnetic rotation
by the velocity found after an initial half electric acceleration (the first term in the numerator) and before a final half
acceleration (the second term in the numerator).

All of these integrators have second-order error in the time step, as one can see from Taylor expansion. E.g.,

v̄
v

=
~v(ū

v

+�~u/2)

2
+

~v(ū
v

��~u/2)

2
= ~v(ū

v

) +O(�t2), (11)

is equivalent to Eq. (7) to second order. That the Boris push has the same order of error follows from a similar
calculation.

III. Explicit evaluation

The new integrator (5-7) looks implicit, as the final momentum on the left side of (5) is involved in its definition
through (7). However, it can be explicitly computed by methods similar to that of [2]. We first write the new
integrator as the composition of two integrators.

~u
f

= ū
new

+�~u
new

/2 and (12)

~u
new

= ū
i

+�~u
new

/2 or (13)

~u
i

= ū
new

��~u
new

/2, (14)

where

�~u
new

= 2~✏+
ū
new

�
new

⇥ 2~�, (15)

with

~� ⌘ q ~B

2m
�t, (16)



Surfaces of section find that Vay has much 
larger islands, but basically still integrable

•One model problem

• Invariants in involution: pz,
•Surface of section (islands! Chaotic motion?)
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can be solved to give

~Y =
~u
new

� ~� ⇥ ~u
new

/�
new

+ ~�~� · ~u
new

/�2
new

1 + �2/�2
new

, (37)

which can be used in Eq. (34) and ultimately with Eqs. (32 and 33) to obtain

J
f,new

= 1 +
�2 + (~� · ū

new

)2

�4
new

. (38)

By an identical process, one can show that

J
i,new

= 1 +
�2 + (~� · ū

new

)2

�4
new

. (39)

Thus, the Jacobian of the first half step equals the inverse of the Jacobian for the second half step, and so their
product is unity, and the new integrator is volume-preserving, just like the Boris integrator.

The Vay integrator can be analyzed in this same way. It can likewise be composed into two half steps, but with
the first being an explicit step using u

i

/�
i

followed by an implicit step using u
f

/�
f

. As a result the full Jacobian for
the Vay integrator is

J
v

=
J(x

i

, u
i

)

J(x
i

, u
f

)
, (40)

where

J(x, u) = 1 +
�2 + (~� · ~u)2

�4
.. (41)

Consequently, after N steps, the di↵erential volume element in the Vay integrator is

J
v,B

=
J(x0, u0)

J(x0, u1)

J(x1, u1)

J(x1, u2)
...
J(x

N�1, uN�1)

J(x
N�1, uN

)
, (42)

Because the two Jacobians in any of the fractions of Eq. (42) depend on di↵erent variables (the initial and final
momenta) while having the same functional form, the Vay integrator is not generally volume-preserving. At subsequent
steps, the di↵erential volume grows or shrinks by a similar factor, but now evaluated at the new position. The function,
J(x, u) varies over space but is bounded for bounded regions. Hence, generally the factors in Eq. (42) are variously
greater and less than unity. While one could imagine a trajectory that conspires to have all factors either greater or
less than unity, we have not so far been able to construct such a case. In the case where the magnetic field is constant
in space and time, the series telescopes and then the boundedness of J(x, u) prevents the existence of attractors or
repellers.

VI. Numerical results

We choose a test problem of the form,

~E = E
x

(x)x̂ (43)

~B = B
x

(y)x̂, (44)

for which

~A = A
z

(y)ẑ. (45)

The Hamiltonian for this system is

H =
q

1 + p2
x

+ p2
y

+ (p
z

�A
z

(y))2 + �(x) (46)
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VI. Numerical results

We choose a test problem of the form,

~E = E
x

(x)x̂ (43)

~B = B
x

(y)x̂, (44)

for which

~A = A
z

(y)ẑ. (45)

The Hamiltonian for this system is

H =
q

1 + p2
x
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y
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�A
z
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in units of q = m = c = 1 This Hamiltonian is independent of z, so p
z

is an invariant of the motion. It is also time
independent, so H is an invariant. Further,

I
y

⌘ p2
y

+ (p
z

�A
z

(y))2 (47)

is an invariant of the motion and in involution with the other invariants. Hence, this system of three degrees of
freedom has three invariants in involution and so is integrable.

To determine the degree to which the various integrators preserve these invariants, we use the Poincaré surface of
section technique. We follow the trajectories for initial conditions of the same energy and same p

z

and plot the points
(y, p

y

) in the plane x = 0 when that plane is crossed with positive p
x

. (This does require interpolation to that plane,
when that plane is crossed in some time step.) We can then check how well the invariant (47) is preserved by the
integration.

For numerical integration, we have to be more specific. We choose p
z

= 0 without loss of generality, as a di↵erent
value of p

z

is equivalent to choosing a di↵erent function A
z

(y). We then choose the particular fields,

~E = �axx̂ (48)

~B = byx̂, (49)

which corresponds to a sheared magnetic field with the reversal at y = 0. For this system,

A
z

(y) =
1

2
by2 (50)

�(x) =
1

2
ax2. (51)

We choose the energy H = 4. to be moderately relativistic to expose the e↵ects of the varying volume element (40),
and we choose a = 1 and b = 2, i.e., of order unity.

We first use all integrators with a very small time step, �t = 1/40, which corresponds to 80⇡ ⇡ 250 time steps per
period of the oscillation in x for the given potential. The results are shown in Fig. 1. At this temporal resolution, all

(a) Boris (b) Vay (c) New

FIG. 1: Poincaré surfaces of section for the system (48), integrated with �t = 1/40 using the Boris (1a), Vay (1b),
and new (1c) integrators.

integrators are seen to give nested surfaces in this plane, in essence showing that they are all preserving the invariants
of the problem.

Next we use a time step, �t = 1/10 that is more typically used in simulations. This corresponds to 20⇡ ⇡ 60 time
steps per period of the oscillation in x for the given potential. The results are shown in Fig. 2. At this temporal
resolution, the Boris and new integrators continue to show nested surfaces in this plane, showing that they are
accurately representing the topology of the trajectories. However, for the Vay integrator with the initial condition
p
y

⇡ 1.7 a resonance island is seen. (This is a two-fold degenerate resonance; trajectories started in the top island
do not visit the bottom island.) Thus, a finite volume of trajectories is trapped in this resonance. Moreover, the
sections for di↵erent trajectories are seen to cross each other. This is an indication that the other invariants (either
energy or p

z

) are less well-preserved, as crossing can occur only if the trajectories are for di↵erent values of the other
invariants. Thus, in this example, with a reasonable choice for the time step, use of the Vay integration leads to
unphysical consequences.
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FIG. 2: Poincaré surfaces of section for system (48), integrated with �t = 1/10 using the Boris (2a), Vay (2b), and
new (2c) integrators.

VII. Summary and future directions

We have derived a new integrator for charged particle motion in arbitrary electromagnetic fields that is both volume-
preserving (like the Boris push) and also correctly computes the ~E ⇥ ~B drift velocity (like the Vay push). This new
integrator has been tested numerically and compared with the other integrators. It is found not to introduce sizable
resonances at reasonable values for the time step in contrast with the integrator of [2].

A number of new directions deserve attention in this area. What are the consequences of composing integrators
for which the volume alternately grows and shrinks, as it does for the Vay integrator? Can one have attractors and
repellers in this case? How does one extend these methods to higher order, as was done for symplectic integrators by,
e.g., [12] and others. More importantly, what is gained? For beam tracking, one needs a spatial version of the current
integrator. Combining higher-order with spatial integration could be very powerful for beam tracking. Finally, the
extension of these concepts to self-consistent simulations, with higher-order integrators, could be explored.
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Many more issues to explore

•What happens in the self-consistent (evolving 
fields) context?

•Could this be a problem in tracking/self-
consistent codes?

•Others are right now looking at this in time-
domain codes.
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Hi John, 
Sorry for my late response. Have been swamped this week. 
Only glanced at it but looks like a great new particle pusher. 
Likely that we will implement and test it soon.
Best, Jean-Luc 



Summary and conclusions
•While the KAM theorem can be proven for only 

symplectic integrators, particular cases provide 
evidence that volume preservation is sufficient
u1.5D they are the same
uStability seen in spatial tracking studies relevant to muon 

collider
•Exact beam equilibrium calculations pose additional 

requirement
•A new integrator has been found to satisfy both
•These dual requirements are not being satisfied by 

“space-charge-tracking” codes?
•How do we verify that existing computations are giving 

the right answer for truly intense beams?20170316 SIMULATIONS EMPOWERING YOUR 
INNOVATIONS
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