





**PANDA Collaboration Meeting** 

June 06-09, 2017 HIM, Mainz

# Feasibility studies for the measurement of time-like electromagnetic proton form factors in reactions of $\overline{p}p \rightarrow \mu^+\mu^-$

#### Iris Zimmermann



Helmholtz-Institut Mainz Johannes-Gutenberg University Mainz



#### Feasibility studies for the measurement of time-like electromagnetic proton form factors using

$$\overline{p}p \rightarrow \mu^+\mu^-$$

- ▶ Differential cross section<sup>1</sup> of **signal reaction**  $\overline{p}p \rightarrow \mu^+ \mu^-$ 
  - → Access to the **time-like**, **electromagnetic** form factors of the proton,
  - $\mathbf{G}_{\mathrm{E}} \text{ and } \mathbf{G}_{\mathrm{M}}:$   $\frac{d\sigma}{d\cos\theta_{CM}} \propto \frac{\beta_{l^{-}}}{\beta_{\bar{p}}} \left( \frac{|G_{M}|^{2}}{s} \right) \left[ \left(1 + \frac{4m_{l^{-}}^{2}}{s} + \beta_{l^{-}}^{2}\cos^{2}\theta_{CM}\right) + \frac{R^{2}}{\tau} \left(1 \beta_{l^{-}}^{2}\cos^{2}\theta_{CM}\right) \right]$
- Extraction of  $|G_E|$  and  $|G_M|$ and their ratio **R from reconstructed signal angular distribution** after full analysis and efficiency correction.
- > Strong background mainly

$$\overline{p}p \rightarrow \pi^+\pi^-$$

$$\frac{\sigma(\overline{p}p \to \mu^+ \mu^-)}{\sigma(\overline{p}p \to \pi^+ \pi^-)} \propto 10^{-6}$$

#### Good background rejection needed!

1) A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

#### Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis



1) Tomasi-Gustafsson, E.; Rekalo, M.P., Phys. Lett. B 504, 291-295. 2001

#### Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis : Signal selection



#### Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis : Strategy





# Cut configurations & Signal efficiencies @ p<sub>beam</sub> = 1.5, 1.7, 2.5 & 3.3 GeV/c

#### Feasibility studies: time-like proton form factors @ PANDA Cut configuration & Signal efficiency

| MVA utilizing Boosted Decision Trees (BDT) |                                                                                                         |                                            |                              |                               |                         |                                       |                      |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|-------------------------------|-------------------------|---------------------------------------|----------------------|
| P <sub>beam</sub><br>[GeV/c]               | $\begin{array}{c} M_{inv}(\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}) \\ [GeV^2] \end{array}$ | $\left  \varphi^{+} - \varphi^{-} \right $ | $(\theta^+ + \theta^-)_{CM}$ | BDT                           | Signal<br>efficiency    | ε <sub>B</sub><br>[10 <sup>-6</sup> ] | S-B<br>ratio         |
|                                            |                                                                                                         |                                            |                              |                               | c                       |                                       |                      |
| 1.5                                        | ]2.1 ; 2.4[                                                                                             |                                            |                              | > 0.297<br>> 0.335<br>> 0.365 | 0.380<br>0.244<br>0.151 | 19.1<br>7.0<br>2.8                    | 1:10<br>1:6<br>1:4   |
| 1.7                                        | ]2.2 ; 2.5[                                                                                             | ]175 ; 185[                                |                              | > 0.290<br>> 0.335<br>> 0.360 | 0.445<br>0.274<br>0.186 | 33.6<br>11.2<br>5.64                  | 1:18<br>1:10<br>1:7  |
| 2.5                                        | ]2.4 ; 2.8[                                                                                             |                                            | ]179.65 ; 185[               | > 0.234<br>> 0.280<br>> 0.300 | 0.531<br>0.334<br>0.242 | 59.6<br>17.5<br>9.20                  | 1:28<br>1:13<br>1:10 |
| 3.3                                        | ]2.6 ; 3.1[                                                                                             |                                            |                              | > 0.310<br>> 0.320<br>> 0.340 | 0.333<br>0.295<br>0.222 | 15.2<br>13.0<br>7.78                  | 1:7<br>1:5<br>1:4    |

#### -> Apply background subtraction!

#### Feasibility studies: time-like proton form factors @ PANDA Cut configuration & Signal efficiency



# Analysis:

# **Background contamination**

Question: How to obtain the angular distribution of the expected pion background contamination after signal selection?

Answer: 1) Apply signal selection on B1-> Obtain suppression factor

- 2) Calculate expected background contamination: N<sub>B1</sub>
- 3) Change cut on BDT response until  $N_{B1}$  is reached
- 4) Apply on B2 -> Obtain  $N_{B2}$



10





Data from Eisenhandler et al., Nuclear Phys. B, Vol.96, 109-154 (1975)

→ Kaon suppression factor ~ 10<sup>-8</sup>
 → Signal pollution <1%</li>

Analysis:

## Precision of $|G_E|$ , $|G_M|$ and $R=|G_E|/|G_M|$

@ p<sub>beam</sub> = 1.5, 1.7, 2.5 & 3.3 GeV/c



#### Feasibility studies: time-like proton form factors @ PANDA Cut configuration & Signal efficiency



#### Statistical precision on |G<sub>E</sub>|&|G<sub>M</sub>| - PRELIMINARY -

| p <sub>beam</sub><br>[GeV/c] | Signal<br>efficiency<br>ε [%] | G <sub>E</sub> | $\Delta  G_E $ | G <sub>E</sub>  /Δ G <sub>E</sub>  <br>[%] | G <sub>M</sub> | $\Delta  G_M $ | G <sub>M</sub>  /∆ G <sub>M</sub>  <br>[%] |
|------------------------------|-------------------------------|----------------|----------------|--------------------------------------------|----------------|----------------|--------------------------------------------|
| 1.5                          | 38.0                          | 0.1445         | 0.0048         | 3.33                                       | 0.1381         | 0.0024         | 1.76                                       |
| 1.7                          | 44.5                          | 0.1222         | 0.0065         | 5.32                                       | 0.1205         | 0.0031         | 2.59                                       |
| 2.5                          | 33.4                          | 0.0717         | 0.0063         | 8.79                                       | 0.0711         | 0.0023         | 3.28                                       |
| 3.3                          | 29.5                          | 0.0451         | 0.0089         | 19.66                                      | 0.0432         | 0.0034         | 7.96                                       |





15

### Statistical precision on R=|G<sub>E</sub>|/|G<sub>M</sub>| PRELIMINARY



Highest precision @ pbeam = 1.5 GeV/c :  $\Delta$  R/R  $\approx$  5.1%

# **Total uncertainty**

|                                                                 | P <sub>beam</sub><br>[GeV/c] | Statistical<br>uncertainty<br>[%] | Systematical      | Total          |                    |
|-----------------------------------------------------------------|------------------------------|-----------------------------------|-------------------|----------------|--------------------|
| PRELIMINARY                                                     |                              |                                   | Luminosity<br>[%] | Binning<br>[%] | uncertainty<br>[%] |
|                                                                 | 1.5                          | 3.33                              | 2.0               | -              | 3.88               |
| $ \mathbf{G}_{\mathbf{F}} /\Delta \mathbf{G}_{\mathbf{F}} $ [%] | 1.7                          | 5.32                              |                   | -              | 5.68               |
|                                                                 | 2.5                          | 8.79                              |                   | -              | 9.01               |
|                                                                 | 3.3                          | 19.66                             |                   | 0.44           | 19.77              |
|                                                                 | 1.5                          | 1.76                              | 2.0               | -              | 2.66               |
| $ \mathbf{G}_{\mathbf{M}} /\Delta \mathbf{G}_{\mathbf{M}} $     | 1.7                          | 2.59                              |                   | -              | 3.27               |
| [%]                                                             | 2.5                          | 3.28                              |                   | -              | 3.84               |
|                                                                 | 3.3                          | 7.96                              |                   | 0.06           | 8.21               |
|                                                                 | 1.5                          | 5.06                              |                   | -              | 5.06               |
| Δ <b>R/R</b> [%]                                                | 1.7                          | 7.86                              | _                 | -              | 7.86               |
|                                                                 | 2.5                          | 11.98                             |                   | -              | 11.98              |
|                                                                 | 3.3                          | 27.76                             |                   | 0.37           | 27.76              |

#### Feasibility studies: time-like proton form factors @ PANDA

Effective Form Factor of the proton

$$\overline{p}p \rightarrow \mu^+ \mu^-$$

Effective proton Form Factor



| Statistical uncertainty on   F <sub>p</sub> |                                                                  |                                                                             |  |  |
|---------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| q <sup>2</sup><br>[GeV <sup>2</sup> ]       | $ \mathbf{F}_{\mathbf{p}}  \pm \Delta  \mathbf{F}_{\mathbf{p}} $ | $\frac{\Delta  \mathbf{F}_{\mathbf{p}}  /  \mathbf{F}_{\mathbf{p}} }{[\%]}$ |  |  |
| 5.08                                        | $0.1608 \pm 0.0005$                                              | 0.31                                                                        |  |  |
| 5.40                                        | $0.1395 \pm 0.0011$                                              | 0.79                                                                        |  |  |
| 6.77                                        | $0.0838 \pm 0.0009$                                              | 1.07                                                                        |  |  |
| 8.20                                        | $0.0523 \pm 0.0007$                                              | 1.34                                                                        |  |  |
|                                             | -PRELIMIN                                                        | ARY-                                                                        |  |  |

# Analysis:

# Alternative method to obtain pion background distribution @ $p_{beam} = 1.5 \text{ GeV/c}$ and $\epsilon = 38.0\%$

Question: Is there a different way to obtain the angular distribution of the pion background contamination?

Answer: This can be done at high signal efficiencies, e.g.  $\epsilon = 38.0\%$ 

How to: 1) Apply signal selection on B1-> Obtain distribution  $(N^*_{B1})$ 2) Calculate **expected background contamination**:  $N_{B1}$ 3) Fit distribution of  $N^*_{B1}$ -> Obtain function  $f_1$ 



 $N^*_{B1}$ : pion counts after signal selection (B1) = 1914 counts

Question: Is there a different way to obtain the angular distribution of the pion background contamination?

Answer: This can be done at high signal efficiencies, e.g.  $\epsilon$  = 38.0%

How to: 1) Apply signal selection on B1-> Obtain distribution  $(N^*_{B1})$ 2) Calculate **expected background contamination**: N<sub>B1</sub>

3) Fit distribution of  $N^*_{B1}$  -> Obtain function  $f_1$ 

4) Fill new histograms (Random Number Generator) according to  $f_1$ 



#### **Original method**

Alternative method



**Background distributions** 



Efficiency corrected, selected signal data after background subtraction

Alternative method confirms original method to obtain pion background distribution @ 1.5 GeV/c.

•23

#### Feasibility studies: time-like proton form factors @ PANDA Summary & Outlook

> Monte Carlo simulation & analysis for **signal** and main **background** channel

$$\overline{p}p \to \mu^+ \mu^- \qquad \overline{p}p \to \pi^+ \pi^-$$

- Feasibility studies on μ<sup>+</sup>μ<sup>-</sup>:
  - For p<sub>beam</sub> between 1.5 and 3.3 GeV/c a total precision of
    - **R** between 5.1% and 27.8%
    - $\blacktriangleright$  |G<sub>M</sub>| between 2.7% and 8.2%
    - $\blacktriangleright$  |G<sub>E</sub>| between 3.9% and 19.8%

A statistical precision on the effective proton form factor between 0.3% and 1.3% could be achieved.

- ➤ Suppression factor for di-kaon channel ~ 10<sup>-8</sup> -> signal pollution < 1%</p>
- Alternative method using more realistic background shape confirms result on R @ 1.5
  GeV/c and ε = 38.0% -> repeat study at different beam momenta
- Updated Release Note is currently under discussion on the PANDA forum
- Day1 simulation (0.1 fb<sup>-1</sup>, reduced Panda Detector setup) planned (software not ready)
  - Estimation: Statistical precision approx. 20% at p<sub>beam</sub> = 1.5 GeV/c

# Thank you for your attention!

#### Feasibility studies: time-like proton form factors @ PANDA Angular distributions of generated events

$$L = 2 fb^{-1}$$

<u>Signal</u>

**Background** 



#### Feasibility studies: time-like proton form factors @ PANDA Signal/Background separation: Multivariate Data Classification



- Training & evaluation using simulated signal / background samples
- Choose classification method with best performance: Boosted Decision Trees (BDT)
- Application on data
- Cut on BDT response : Signal/Background separation

Question: How to study the influence of background fluctuations on the extracted values of R,  $\Delta$ R?



#### Background fluctuations = Difference of the background distributions Old BKG New BKG

ε = 38.04%



# $\epsilon = 38.04\%$



# Data on the time-like proton form factor ratio $R=|G_E|/|G_M|$



BaBar: Phys. Rev. D88 072009 LEAR: Nucl.Phys.J., B411:3-32. 1994 BESIII: arXiv:1504.02680. 2015 CMD-3: arXiv:1507.08013v2 (2015) @ BaBar (SLAC):  $e^+e^- \rightarrow \overline{p}p\gamma$ 

data collection over wide energy range

@ PS 170 (LEAR):  $\overline{p}p \rightarrow e^+e^-$ 

data collection at low energies

Data from BaBar & LEAR show inconsistencies

- @ BESIII:  $e^+e^- \rightarrow \overline{p}p$
- Measurement at different energies
- Uncertainties comparable to previous experiments

@ CMD-3 (VEPP2000 collider, BINP):

- Energy scan  $\sqrt{s} = 1 2 \ GeV$
- Uncertaincy comparable to the measurement by BaBar

#### Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis: Background studies

$$\overline{p}p \rightarrow \pi^+\pi^-$$

- > New event generator developed by Mainz working group (M. Zambrana et al.)
- Based on two different parametrizations

| Low energy                                           | Transistion region   | High energy                                                                                                                                         |
|------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.79<br>Data: Eisenhandler et. al.,<br>NP B96 (1975) | 2.43 5               | 5.00<br>12.00<br>p <sub>beam</sub> (GeV/c)<br>A. Eide et. al., NP B60(1973)<br>T. Buran et. al., NPB<br>116(1976)<br>C. White et. al., PRD 49(1994) |
| Legendre<br>Model: polynomial fit                    | Linear interpolation | Regge Theory<br>J. Van de Wiele and<br>S. Ong, EPJA 46 (2010)                                                                                       |

#### Feasibility studies: time-like proton form factors @ PANDA Background

Background including three-body final states: kinematically very different from signal

➢ Background of two heavy charged particles (K⁺K⁻, etc.) in the final state:

- Cross section is high, but...
- Detector response (Straw Tube Tracker, Cherenkov detector, ...) very different from signal

The most challenging background is  $\overline{p}p \rightarrow \pi^+\pi^-$  due to:

- Kinematically very similar to signal
- > **Detector response very similar** to signal
- Cross section is by a factor of 10<sup>6</sup> higher than signal cross section