Status of CA Track Finder

Ivan Kisel^{1,2,3} and Irina Zivko (Rostovtseva)⁴

¹Goethe-University Frankfurt am Main

²FIAS Frankfurt Institute for Advanced Studies

³GSI Helmholtz Center for Heavy Ion Research

⁴Institute for Theoretical and Experimental Physics, Moscow

CA Track Finder in STT and MVD

10 primary tracks with pt = 1 GeV/c

	STT+MVD	
Efficiency	100.0	
Clone	4.8	
Ghost	1.5	
Tracks/event	10	
Time, ms/event	1	

S. Gorbunov, 10.12.2014

Reconstruction Efficiency

Tobias found a problem in the CA TrackFinder:

Overall track finding efficiency was only 42% and no MVD hits

What was done:

- 1. Corrected normalisation (barrel only) of track efficiency calculation in standard QA (trackingQA)
- 2. Corrected track finder performance to account for tracks with > 1 hit/layer => QA efficiency = CA Track Finder Performance
- 3. Adjusted initialisation of the track finder to Panda data (detector geometry, errors on input hits, internal tracking cuts,...)

Reconstractable track selection	Eff. old $1+2$	Eff. new 1+2+3
StandardTrackFunctor: > 3 Hits in MVD or > 5 Hits in (MVD+STT+GEM)	42.3	64.1
OnlyBarrelFunctor: > 3 Hits in barrel MVD and > 5 Hits in (barrel MVD + STT))	57.6	87.3
OnlySttFunctor: > 5 Hits in STT	59.0	88.1
OnlyBarrelFunctor && (p > 0.05)	61.3	92.3
OnlySttFunctor && ($p > 0.05$)	62.5	92.5
OnlyBarrelFunctor && (pt > 0.05)	62.0	92.7
OnlyBarrelFunctor && (pt > 0.1)	66.9	94.6
(> 5 Hits in (barrel MVD + STT)) && (p >= 0.05)	62.4	92.7
Performance of CA tracker: (> 5 Hits in (barrel MVD + STT)) && (p >= 0.05)	62.5	93.0
Performance of CA tracker: (> 5 rows of hits in (barrel MVD + STT)) && (p >= 0.05)	65.9	96.6
Performance of CA tracker: (> 5 rows of hits in (barrel MVD + STT)) && (pt >= 0.05)	66.1	96.9

Reconstruction Efficiency

Efficiency, %	Eff. old	Eff. new
High-p primary	97.9	98.1
High-p secondary	91.1	93.3
High-p set	97.3	97.7
Low-p primary	63.8	97.7
Low-p secondary	42.1	93.0
Low-p set	57.0	96.2
All set	65.9	96.6

Cut on Very Low-Momentum Tracks

A cut p>0.05 has been introduced in the CA performance to remove very low-momentum tracks

All Set Efficiency vs p_T and p

Event 355

MVD pixel hits are now included in tracks

Event 323

MVD pixel hits are now included in tracks and low $\ensuremath{\textbf{p}}_{\ensuremath{\mathsf{T}}}$ tracks are reconstructed

Purity of Reconstructed Tracks

Purity = Nmc_true_hits / All reco_hits

Residuals and Pulls

FTS CA Track Finder

STT CA track finder successfully applied to FTS:

• STT CA track finder in conjunction with the KF for the forward track-model. Track-candidates creation in progress:

- Dropout of hits issue which will be resolved soon.
- · Caused by the divergences in the Kalman filter.

- First measurement needs special filtration (because of the initial approximation for covariance matrix tends to infinity)
- In case of big errors in the covariance matrix the equations of filtration are modified by Taylor expansion because of their numerical divergency.
- Under investigation: numerical divergency because of the mixed covariance matrix with small errors on {x,tx} and big errors on {y,ty,q/p}. Appears after filtration of 2 first measurements with the same tube angle.

M. Pugach, M. Zyzak

Summary

- CA track finder modified wrt. the detector geometry, hit errors etc.
- Tracking efficiency in the barrel STT/MVD detectors recovered.
- Kalman filter track fit is under investigation in the barrel and forward parts of the detector system.

Thanks to Dmitry Golubkov (ITEP, Moscow) and Sergey Gorbunov (FIAS, Frankfurt) for their help with software and fruitful discussions.