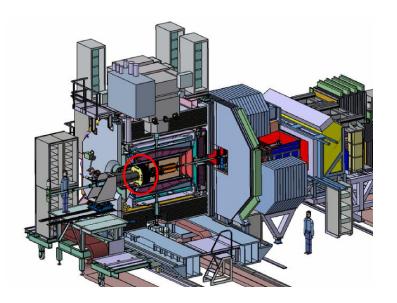
Updated Backward EMC Geometry

Luigi Capozza
for the Mainz EMC group



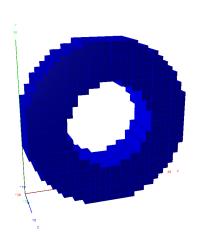
PANDA CM 17/2 – Computing Session 7 June 2017

Outline

- Current status of the backward EMC description
- Details on the new geometry
- Work to be done on reconstruction

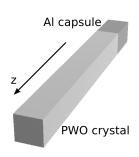
The backward EMC

Geometry description: current status


- Last update: 2009 by Dmitry Khaneft
- PWO crystals in air because of lack of info on mechanical design
- Old crystal arrangement: changed due new geometrical constraints

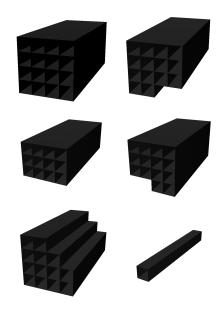
Needed updates:

- description of dead materials
- also in the backward part
- current crystal arrangement
- (some updates in the reconstruction)

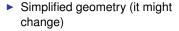

Choice: Using ROOT geometry classes

- more efficient tracking
- "easier" to implement (for me)

PWO crystals

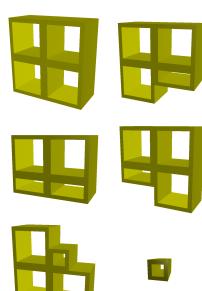

- ▶ 524 (new but preliminary) PbWO₄ crystals
- Straight geometry: 200.0×24.4×24.4 mm³
- ► Aluminium capsule in the back side (new)
 - ► 42.0×24.4×24.4 mm³
 - should contain preamp → here only Al

Carbon fibre alveoles


- ▶ Outer shape: TGeoXtru
- ► Holes with

 TGeoCompositeShape
- ► Length: crystal+capsule
- Wall thickness: 0.3 mm
- Material: prepreg (57% C, 43% epoxy)

Aluminium inserts

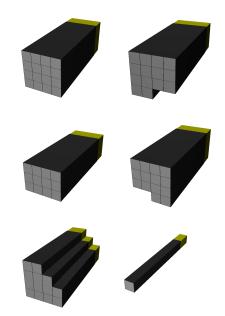

Outer shape: TGeoXtru

► Holes with

TGeoCompositeShape

Length: 45 mm

Material: aluminium

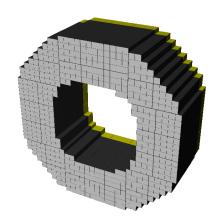


Complete submodules

- In total 6 different types
- ► TGeoVolumeAssembly with:
 - 1 alveole
 - 1 insert
 - ▶ 16, 14, 12, 14, 13, 1 crystals

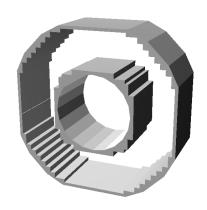
Simplification:

- there is no 1-crystal submodule
- in reality: 13+1 glued together
- here treated as independent
- \Rightarrow error: shift by 0.55 mm


Crystal arrangement

- Subdivision in quarters (TGeoVolumeAssembly)
- 1 quarter is made of
 - side: 6 submodules
 - corner: 3 submodules (4 in MC)
- Distance between alveoles: 0.55 mm

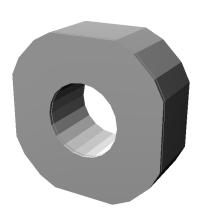
Crystal arrangement


- Subdivision in quarters (TGeoVolumeAssembly)
- 1 quarter is made of
 - side: 6 submodules
 - corner: 3 submodules (4 in MC)
- Distance between alveoles: 0.55 mm
- Complete backward EMC:4 quarters rotated w.r.t. z-axis

Cooling shells

Side cooling

- Complicated shape (TGeoCompositeShape)
- ► Thickness: 10 mm
- Material: aluminium (small holes neglected)

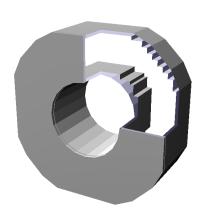

Cooling shells

Side cooling

- Complicated shape (TGeoCompositeShape)
- ► Thickness: 10 mm
- Material: aluminium (small holes neglected)

Front cooling

- Plate covering the full BWEC
- ► Thickness: 10 mm
- Materials
 - shell HDPE with tubes
 - coolant: water/methanol (WM) $(\rho = 0.93 \text{ g/cm}^3)$
 - here: common mixture (60% HDPE/40% WM)

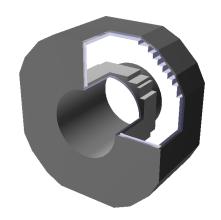

Cooling shells

Side cooling

- Complicated shape (TGeoCompositeShape)
- ► Thickness: 10 mm
- Material: aluminium (small holes neglected)


Front cooling

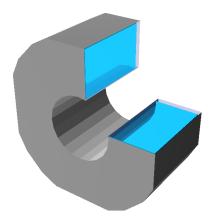
- Plate covering the full BWEC
- Thickness: 10 mm
- Materials
 - shell HDPE with tubes
 - coolant: water/methanol (WM) $(\rho = 0.93 \text{ g/cm}^3)$
 - here: common mixture (60% HDPE/40% WM)


Insulation

- Vacuum Insulating Panels (VIP)
- ► Thickness: 10 mm
- Material: Fumed silica (SiO₂) $(\rho = 0.2 \text{ g/cm}^3)$
- ► Side (in/out) and front VIPs

Insulation

- Vacuum Insulating Panels (VIP)
- ► Thickness: 10 mm
- Material: Fumed silica (SiO₂) (ρ = 0.2 g/cm³)
- ► Side (in/out) and front VIPs


Outer and inner volumes

Outer volume

- Mounting plate on the back: 30 mm
- Outer cover on the rest: 4 mm
- Material: aluminium

Inner volume

• Material: gas N_2 ($\rho = 1.359 \cdot 10^{-3} \text{ g/cm}^3$)

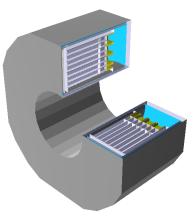
Outer and inner volumes

Outer volume

- Mounting plate on the back: 30 mm
- Outer cover on the rest: 4 mm
- Material: aluminium

Inner volume

• Material: gas N_2 ($\rho = 1.359 \cdot 10^{-3} \text{ g/cm}^3$)

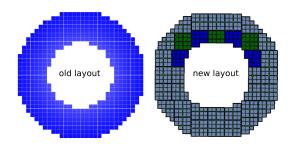

Volume hierarchy

```
Emc4 (top)

BWECouterVol (outer Al volume)

BWECinnerVol (inner N<sub>2</sub> volume)

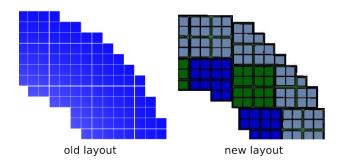
4 quarters + cooling shells + VIPs
```



Material summary

- 6 media used in total
- 4 new media defined
 - added to file media_pnd.geo
 - could be useful for the rest of EMC

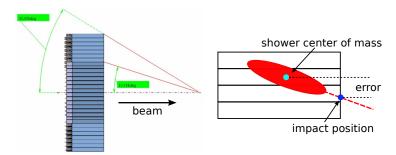
	elements	density [g/cm ³]	rad. length [cm]	
PWO	Pb,W,O	8.29	0.89	
aluminium	Al	2.70	8.88	
prepreg	C,H,CI,O	1.8	22.27	new
fumed silica	Si,O	0.20	134.90	new
HDPE+water/methanol	C,H,O	0.95	42.78	new
nitrogen gas (-25° C)	Ν	$1.36 \cdot 10^{-3}$	$27.83 \cdot 10^3$	new

To be done


Crystal numbering scheme and mapping

- ► To be modified (according to D. Melnychuk, 2012): PndEmcMapper, PndEmcStructure
- Does anybody have more information/advice?

To be done


Crystal numbering scheme and mapping

- ➤ To be modified (according to D. Melnychuk, 2012): PndEmcMapper, PndEmcStructure
- Does anybody have more information/advice?
- ► The crystals are not always aligned anymore ⇒ needs to be taken into account in the cluster reconstruction

To be done

Reconstruction upgrade?

- ► The crystals do not point to the target
- Error in the cluster position has to be taken into account (already done?)
- Some simulations are needed to estimate the correction
- Prototype test data are available and will be used too (more beam tests are foreseen)

Summary

- The current geometry of the backward EMC is implemented
- A script defines a ROOT geometry tree and saves it to disk
- New materials were defined and can be used by others
- ► The code has to be checked in to svn
- ▶ The EMC mapping utility classes need to be updated
- ► The cluster position reconstruction might need an upgrade:
 - is the angle of entrance taken into account?
 - we have prototype test data for estimating the effect