Investigations of Detector Signatures from $\Lambda\bar{\Lambda}$ Events

Jenny Regina

Uppsala University

Department of Physics and Astronomy

PANDA Collaboration Meeting 07/06-2017 GSI, Darmstadt

Outline

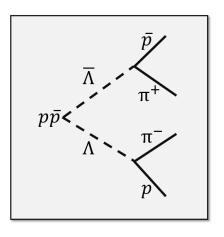
- Motivation
 - Dynamical Track and Event Reconstruction
 - SttCellTrackFinder
- $\Lambda\bar{\Lambda}$ events
 - STT signatures
 - MVD signatures
- Comparison between simulations where the decay is handled by EvtGen and Geant4
 - $-\Lambda\bar{\Lambda}$ events and $\Xi\bar{\Xi}$ events
- Outlook and Summary

Motivation

 Hyperons might be difficult to reconstruct due to their decay topology with e.g. displaced vertices

Hyperon	c au[cm]
Λ	8.0
Ξ-	4.9

- DyTER-Dynamical Track and Event Reconstruction
- STTCellTrackFinder
 - Cellular Automaton to form tracklets from STT hits
 - Riemann fit to combine tracklets


Goal: Dynamic track finder which is as general as possible but works for hyperon tracking

Motivation

Focus:

- $\Lambda\bar{\Lambda}$ (and $\Xi^-\Xi^+$) events due to their complex decay topology
- MVD and STT for tracking
- ullet MVD and SciTil for possibility of providing a t_0

$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$

$p\bar{p} \rightarrow \Lambda\bar{\Lambda} \rightarrow p\pi^-\bar{p}\pi^+$

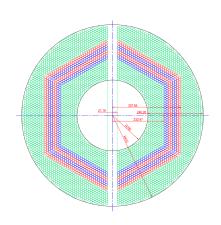
- 10,000 events
- Beam momenta: 1.642 GeV, 7 GeV and 15 GeV
- Forward peaking distribution, $\bar{\Lambda}$ forward boosted
- EvtGen, entire decay chain specified
- In analysis: only consider particles actually part of the interesting reaction
- Ideal track finder, standard track functor
- Target spectrometer
 - Before bug fix
 - Standard track functor (≥ 4 hits in MVD or ≥ 6 hits in MVD+STT+GEM)
 - Bug: if this track functor was used, all tracks which do not hit forward spectrometer were classified as reconstructible
 - Bug fixed in trunk

$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$

- For events, only hits from final state particles
- Only tracks with \geq 4 STT hits from final state particles (from now, only tracks with \geq 4 STT hits will be considered)

	1.642 GeV	7 GeV	15 GeV
Number of events	10,000	10,000	10,000
Events with a MVD hit	99.94 %	99.47 %	99.14 %
Events with a SciTil hit	34.64 %	3.00 %	1.36 %
Number of tracks	26,013	7,253	6,614
Tracks with a MVD hit	95.5 %	98.3 %	98.0 %
Tracks with a SciTil hit	38.7 %	5.8 %	2.9 %
Tracks with a MVD and a SciTil hit	36.9 %	5.6 %	2.7 %
Tracks with a MVD or a SciTil hit	97.3 %	98.5 %	98.2 %

- MVD itself useful for most events and tracks
- At higher beam momenta, most tracks do not reach SciTil
- MVD and SciTil together are useful at all beam momenta


STT

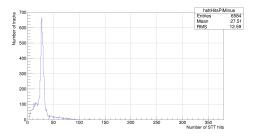
At PANDA: 20 MHz interaction rate

⇒ On average one event every 50 ns

STT

- 4,636 straws
- 27 layers
- When straw tube is hit, gas is ionized and free electrons created
- Electrons travel towards wire at center of tube - signal for readout
- Maximum drift time of electrons: 200 ns
- During drift time no more signals can be registered
 - ⇒ one straw might be occupied for the next 3 or 4 events and might not fire if hit by a particle!

STT


Forward/backward asymmetry of distribution might cause spiralling in magnetic field since Λ decays almost at rest and its decay products are not given much energy

Challenges concerning spiralling tracks with many STT hits:

- Might be difficult to reconstruct
- Particles trapped in magnetic field might not reach outer detectors
- Might block tubes for tracks from later events makes later tracks harder to reconstruct

$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$

STT hits, π^- , 1.642 GeV

- Peak around 27 hits
 - ⇒ most tracks go fairly straight through the STT
- 0.4% of all events contain π^- tracks with \geq 50 STT hits \Rightarrow not many tracks tend to spiral
- ⇒ no cause for concern!

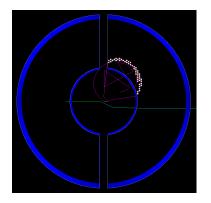
$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$

STT hits, π^- , 7 GeV

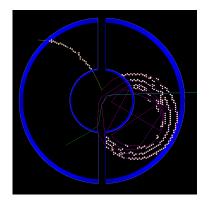
- Peak around 27 hits
 - ⇒ most tracks go fairly straight through the STT
- 24.5% of all events contain π^- tracks with \geq 50 STT hits
 - ⇒ many tracks tend to spiral
- Exist tracks with ≥ 300 STT hits
- ⇒ might cause trouble!

$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$, STT hits

Events with final state particle tracks with \geq 50 STT hits


Kind of track	1.642 GeV	7 GeV	15 GeV
π^-	0.4 %	24.5 %	24.1 %
π^+	0.4 %	0 %	0 %
p	0 %	0 %	0 %
$ar{p}$	0 %	0 %	0 %

Normalization: total number of events


- ullet At higher beam momenta, \sim 1/4 of all events contain a spiralling π^-
- ⇒ might cause trouble!

$par{p} ightarrow \Lambdaar{\Lambda} ightarrow p\pi^-ar{p}\pi^+$, STT hits, 15 GeV

- 60 STT hits from π^-
- Spiralling is confined to one quarter of the STT

- 256 STT hits from π^-
- Spiralling is confined to half of the STT

$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$, MVD hits

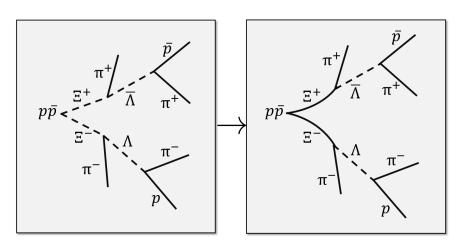
Tracks with 0 MVD hits

	1.642 GeV	7 GeV	15 GeV
р	2 %	1 %	1 %
Ē	5 %	_	_
π^-	3 %	2 %	2 %
π^+	7 %	_	_

Tracks with 0 Pixel hits

Tracks with 0 Strip hits

	1.642 GeV	7 GeV	15 GeV
р	4 %	19 %	21 %
\bar{p}	6 %	_	_
π^-	12 %	15 %	15 %
π^+	12 %	_	_


	1.642 GeV	7 GeV	15 GeV
р	54 %	1 %	1 %
Б	73 %	_	_
π^-	20 %	3 %	3 %
π^+	39 %	_	_

Normalization: total number of tracks of the given type

- MVD useful for these tracks
- Strip part more useful at higher momenta
- Pixel part more useful at lower momenta

Comparison between simulations where the decay is handled by EvtGen and Geant4

$$p\bar{p} \to \Xi^- \Xi^+ \to \Lambda \pi^- \bar{\Lambda} \pi^+ \to p \pi^- \pi^- \bar{p} \pi^+ \pi^+$$

Comparison between simulations where the decay is handled by EvtGen and Geant4

EvtGen

• Entire decay chain defined in decay file

Geant4

- Production of primary particles defined in a decay file
- Primary particles defined as stable for EvtGen
- Interesting decay modes set in UserDecayConfig.C

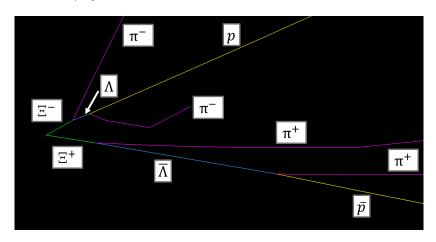
For more details:

https://panda-wiki.gsi.de/foswiki/pub/Computing/Minutes02May2017/2.5.2017_teammeeting.pdf

Comparison between simulations where the decay is handled by EvtGen and Geant4

$$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$$

	Decay by Geant4	Decay by EvtGen
Number of final state particle tracks	25,897	26,013
Number of tracks with at least one MVD hit	24,766	24,851


No significant difference, as expected

For numbers in this table: no restriction on number of STT hits

 A MC track is obtained if secondaries are decayed by Geant4 but not if they are decayed by EvtGen

Decay handled by Geant4

$$p\bar{p}\to \Xi^-\Xi^+ \to \Lambda\pi^-\bar{\Lambda}\pi^+ \to p\pi^-\pi^-\bar{p}\pi^+\pi^+$$

Event Display, 3D view

Outlook

- ullet Analyse Ξ^- events further decaying the particles in Geant4
- Investigate Ω^- events
- Thorough investigation of decay vertex positions
- Investigate usefulness of GEM plates
- Investigate performance of STTCellTrackFinder for Λ ,=^ and Ω^- events

Summary

$\Lambda\bar{\Lambda}$ events:

- MVD useful for most events and final state particle tracks
- More final state particle tracks hit MVD pixels at lower beam momenta and MVD strips at higher beam momenta
- ullet SciTil useful for $\sim 1/3$ of events and final state particle tracks at lowest beam momentum but not at higher beam momenta
- ullet π^- tend to spiral in magnetic field at higher beam momenta
 - Spiralling usually confined to less than 1/2 of STT

Thank you!

