With LIGHT to highest ion beam intensities and shortest ion beam pulses

D. Jahn^{3,*}, J. Ding^{3,**}, D. Schumacher¹, S. Busold², C. Brabetz¹, A .Blazevic^{1,2}, F. Kroll⁴, V. Bagnoud^{1,2} and M. Roth¹

¹GSI Helmholtzzentrum für Schwerionenforschung, ²Helmholtz-Institut Jena, ³Technische Universität Darmstadt, ⁴Helmholtzzentrum Dresden-Rossendorf

LIGHT

About the project [1,2,3]:

LIGHT stands for Laser Ion Generation, Handling and Transport; collaboration of TUDa, GSI, Uni Frankfurt, HI Jena, HZDR proton/ion acceleration driven by the GSI PHELIX laser beam shaping via conventional accelerator technology

Target Normal Sheath Acceleration (TNSA):

intense ion source: $10^{11} - 10^{13}$ protons in ~ 1 ps

energy capture with a pulsed solenoid

pulsed solenoid

- 40.5 mm clear aperture
- B_{z,max} = 8.7 T
- field characterized and simulated
- discharge time 0.2 ms

double spiral resonator:

- rf power > 200 kV
- 3 gaps
- acceleration voltage ± 1 MV
- 108.4 MHz
- injection into rf at -90° synchronous phase

experimental results

- measurement with RCF and spectrometer - $\Delta E/E_0 = 2.7\% \pm 1.7\%$ - $n_p = 1.7x10^9 \pm 15\%$

electric field of rf cavity

photograph of rf cavity

Detector for short proton pulses:

pcCVD diamond detector (13 μ m thick, 1 mm radial area, impedance matching for fast readout)

Phase focussing of 8 MeV/u Protons

Phase focussing of 0.95 MeV/u F⁷⁺

- formation of multitude of peaks due to bunching in cavity
- energy/u and particle numbers lower as for protons because of overall lower generation efficiency

2017

Further improvement of heavy ion beam mproving on homogenity of proton beam (high energy feature)

2018 Reconstruction of the LIGHT experimental area

References:

[1] S. Busold et al., Shaping laser accelerated ions for future

applications – The LIGHT collaboration, NIM-A **740**, 94-98 (2014)

[2] S. Busold et al., Focusing and transport of high-intensity

multi-MeV proton bunches from a compact laser-driven source,

PR-STAB **16**, 101302 (2013)

[3] S. Busold et al., Commissioning of a compact laser-based

proton beamline for high intensity bunches around 10 MeV,

PR-STAB **17**, 031302 (2014)

[4] S. C. Wilks et al., *Energetic proton generation in ultra-intense lasersolid interactions*, Phys. Plasmas 8, 542 (2001).

[5] T. Cowan, Ultralow Emittance, Multi-MeV Proton Beams from a Laser-Virtual Cathode Plasma Accelerator, PRL 92,20 (2004)

Contact: *d.jahn@gsi.de, **j.ding@gsi.de

Darmstadt, 02.05.2017