Laser Spectroscopy of the Heaviest Elements at GSI

P. Chhetri^{1,2}, D. Ackermann³, H. Backe⁴, M. Block^{2,4,5}, B. Cheal⁶, Ch. E. Düllmann^{2,4,5}, C. Droese⁷, J. Even⁸, R. Ferrer⁹, F. Giacoppo^{2,5}, S. Götz^{2,4,5}, F. P.- Hessberger^{2,5}, O. Kaleja^{1,2}, J. Khuyagbaatar^{2,5}, P. Kunz¹⁰, M. Laatiaoui^{2,5,9}, F. Lautenschläger^{1,2}, W. Lauth³, N. Lecesne², L. Lens^{2,4}, E. Minaya-Ramirez¹¹, A. K. Mistry^{2,5}, S. Raeder^{2,5}, Th. Walther¹, A. Yakushev^{2,5} Z. Zhang¹²

¹ TU Darmstadt, ² GSI, ³ GANIL, ⁴ Mainz University, ⁵ HIM, ⁶ University of Liverpool, ⁷ University of Greifswald, ⁸ KVI-CART, ⁹ KU Leuven, ¹⁰ TRIUMF, ¹¹ IPNO, ¹² IMP

Introduction and motivation

- Explore the atomic structure of transfermium elements (Z>100)
- Search for atomic transitions via 2-step resonance ionization
 - Study of relativistic effects
- Investigation of hyperfine structure
 - Extract nuclear spin and moments
- Study of isotope shifts \bullet
 - Extract the changes in mean square charge radii

Z=40

N=20

N=50

N=40

 $Z=20^{-1}$

- Nuclide of interest : ²⁵⁴No (Z=102)
 - Production : ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No

- Why nobelium? \bullet
 - Ground state : [Rn] $5f^{14}7s^2 {}^{1}S_0$
 - Production cross-section : 2 μb \bullet

Experimental setup

Radiation Detected Resonance Ionization Spectroscopy (RADRIS)[2]

• Gas filled stopping cell behind the velocity filter SHIP @ GSI GSI

Optical spectroscopy landscape[1]

stable/long-lived measured not published (07/15)

3 : A. Borschevsky et al., Phys. Rev. A 75 (2007) 04514 4 : V. A. Zuaba et al., Phys. Rev. A 90 (2014) 012504 5 : Y. Liu et al., Phys. Rev. A 76 (2007) 062503 6 : P. Indelicato et al., Eur. Phys. J. D 45 (2007) 155 7 : J. Sugar, J. Chem. Phys. 60 (1974) 4103

Laser systems

- One tunable frequency-doubled OPO and 4 dye lasers for λ_1
- One excimer laser @ 351 nm for second non-resonant step λ_2

Results & outlook

Measurements on nobelium [3]: ²⁵⁴No 0,45 • ¹P₁ state at 29961.46(4) cm⁻¹ 0,30 ^{1}P • Overall efficiency for 254 No : (6.4 ± 1)% 0,15 0,00 00,0 901,0 901,0 001,0 ²⁵³No • Isotopic shift for ²⁵²⁻²⁵⁴No measured • Hyperfine structure for ²⁵³No measured 8 0,053 E 0,000 • A= 734(46) MHz; B= 2815(686) MHz ²⁵²No 0,06 0,04 $Q_{s}(b)$ $\mu(\mu_N)$ 0,02 -0.527 ± 0.034 5.79 ± 1.42 7.145 - 0.593 0.00 10 15 20 25 30 35 40 -20 -15 -10 -5 5 0

Laser detuning (GHz)

First ionization potential (IP) on nobelium:

Several high-lying Rydberg states observed in ²⁵⁴No.

• IP extracted from the Rydberg convergence to be 6.6261(1) eV.

Future measurements

- Extend the isotope chain of No, e.g. ²⁵¹No, ²⁵⁵No
- Laser spectroscopy of lawrencium (Lr, Z = 103) and beyond

Work supported by BMBF, HIM and ENSAR

[1] Campbell et. Al. Nucl. Phys. 86 (2016) 127, [2] F. Lautenschläger et al. Nucl. Instrum. Methods B 383 (2016) 115, [3] M. Laatiaoui et al., Nature 538 (2016) 495, [4] R.D. Herzberg et al., Eur. Phys. J. A 42, (2009) 333

Laser Spectroscopy

Nucl. spectroscopy [4]

