Nozzle Development and their Characterization by a Mach Zehnder Interferometer

Silke Grieser

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik

PANDA collaboration meeting 17/1, Darmstadt, 08.03.2017

Bundesministerium für Bildung und Forschung

Motivation Production of new Laval nozzles

- Laval nozzle is the heart of a cluster source
- Specific convergent-divergent shape

- \bullet Production of a small inner diameter (< 30 $\mu m)$ in combination with the complex geometry is a major technical challenge
- In the past these fine Laval nozzles were produced at CERN

First produced Nozzles (galvanic deposition) at Münster

• To ensure the production an improved production process based on the CERN production was recently developed at the University of Münster

First produced Nozzles (galvanic deposition) at Münster

Precise drilling of the small inner diameter

- Drilling
 - Above: Micro drill (enlarged)
 - $\bullet\,$ Below: Narrowest inner diameter of the nozzle (25 $\mu m)$

- Drill does not reach the opening cone
 - Possible reasons: By the galvanic deposition the tip of the negative became skew/ got blunted
 - \Rightarrow More systematic work required

Measurements with the first produced Nozzles at the PANDA Cluster-Jet Target Prototype

• Highly Intense Core Beams: 35 K, 17 bar (A.-K. Hergemöller, B. Hetz)

Measurements with the first produced Nozzles at the PANDA Cluster-Jet Target Prototype

• Target thickness: 17 bar

Measurements with the first produced Nozzles at the PANDA Cluster-Jet Target Prototype

- Velocity
 - 8 bar 32 K
 - Gaseous H_2 in front of nozzle
 - Typical slim distribution

- 8 bar 28 K
- Liquid H_2 in front of nozzle
- Typical wide distribution

Glass Nozzle

• Manufactured by selective laser etching of glass $(30 \, \mu m)$

Sealing ensures: Accurate extraction, non-poisonous, reusable
⇒ Excellent alternative for indium (even for the CERN nozzles)

Initial Measurements with new Nozzles at the $\overline{P}ANDA$ Cluster-Jet Target Prototype: 25 K, 8 bar

Glass Nozzle Glass nozzle, CERN nozzle, Extension (Ø: 280 µm)

• Comparison between glass nozzle and CERN nozzles

• Glass nozzle with extension

• Extension (narrowest inner diameter: 280 μm)

Glass Nozzle Extension for Glass Nozzle

- Glass nozzle (30 μ m) with extension (280 μ m) \implies Without adjustments
- \bullet CERN nozzle (28 $\mu m)$ (measured by Dr. E. Köhler)

- Nozzle development on a good way
- Ideas for promising solution approach
- Further research and development optimizsation required
- Additional investigations needed
- More work required

Investigations on Beam Properties Mach Zehnder Interferometer

Mach Zehnder Interferometer

Investigations of

- Target thickness
- Shape of the target beam
- Range of the target beam
- Impacts of stagnation conditions at the nozzle
- Studies of nozzles with different geometries

Mach Zehnder Interferometer

Experimental setup:

- Nitrogen
- Temperature: 288 K
- Pressure: 20 bar
- Round nozzle with Ø: 0.5 mm & outlet: 2 mm
- Exposure time: 10 μs

Analysis:

- Phase shift: $\rho_A(x,y) = \frac{\Delta \Phi(x,y)}{2\pi} \frac{\lambda}{k_{GD}}$
- Gladstone Dale constant: k_{GD}

Summary & Outlook

- First successfully produced nozzles (galvanic deposition)
 - \Rightarrow Typical highly intense core beams
 - ⇒ Target thickness in the same order compared to CERN nozzles
 - \Rightarrow Velocity distribution is currently under investigation
 - \Rightarrow More systematic work required
- Successfully produced glass nozzle
 - \Rightarrow Development of a new sealing
 - \Rightarrow Need of an extension
 - ⇒ Target thickness slightly lower compared to CERN nozzle (adjustments needed)
 - \Rightarrow More work necessary

Summary & Outlook

- Investigations on beam properties with a Mach Zehnder Interferometer
 - \Rightarrow Target thickness
 - \Rightarrow Shape of target beam
 - \Rightarrow Range of target beam
 - \Rightarrow Impacts of stagnation conditions at the nozzle
 - \Rightarrow Studies of nozzles with different geometries
 - \Rightarrow Possibility for measurements directly behind the nozzle
 - \Rightarrow Investigations on cluster and gas properties (gaseous H_2 in front of nozzle)
 - \Rightarrow Represents the real thickness (-distribution)
 - \Rightarrow More measurements required

Mach Zehnder Interferometer

