

LIX. PANDA Collaboration Meeting March 06-10, 2017

GSI Darmstadt

Feasibility studies for the measurement of time-like electromagnetic proton form factors in reactions of $\overline{p}p \rightarrow \mu^+\mu^-$

Iris Zimmermann

Helmholtz Institute Mainz Johannes-Gutenberg University Mainz

Feasibility studies for the measurement of time-like electromagnetic proton form factors using $\overline{p}p \rightarrow \mu^+\mu^-$

- > Differential cross section¹ of **signal reaction** $\overline{p}p \rightarrow \mu^+\mu^-$
 - → Access to the **time-like**, **electromagnetic** form factors of the proton,

$$G_{E} \text{ and } G_{M}:$$

$$\frac{d\sigma}{d\cos\theta_{CM}} \propto \frac{\beta_{l^{-}}}{\beta_{\bar{p}}} \left(\frac{|G_{M}|^{2}}{s}\right) \left[\left(1 + \frac{4m_{l^{-}}^{2}}{s} + \beta_{l^{-}}^{2}\cos\theta_{CM}\right) + \frac{R^{2}}{\tau}\left(1 - \beta_{l^{-}}^{2}\cos\theta_{CM}\right)\right]$$

- > Extraction of $|G_E|$ and $|G_M|$ and their ratio **R from reconstructed signal angular distribution** after full analysis and efficiency correction.
- Strong background, mainly

$$\overline{p}p \rightarrow \pi^+\pi^-$$

$$\frac{\sigma(\overline{p}p \to \mu^+ \mu^-)}{\sigma(\overline{p}p \to \pi^+ \pi^-)} \propto 10^{-6}$$

Good background rejection needed!

1) A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Iris Zimmermann, Helmholtz-Institut Mainz

 $R = \frac{|G_E|}{|G_E|}$

Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis

1) Tomasi-Gustafsson, E.; Rekalo, M.P., Phys. Lett. B 504, 291-295. 2001

L = 2 fb⁻¹Event generationAngular distributions of generated events

Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis : Event selection

- 1) <u>Preselection</u>
- Each event must contain at least one positive and one negative track.
 - "Best pair" selected
- > Both tracks must show hits inside the Muon
- Non-zero initial particle momentum at Muon

2) Signal/Background separation based on:

- > Multivariate data classification (Boosted Decision Trees) + cuts
- Kinematical variables:
 - > Production angles $(\theta^+ + \theta^-)_{CM}$
 - > Invariant mass $M_{inv} = \sqrt{(p_+ + p_-)^2}$
 - ▶ Difference in azimuthal angles $|\varphi^+ \varphi^-|$
- Detector observables from Muon System, EMC and STT

Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis : Strategy

Analysis:

Cut configurations & Effect of background fluctuations @ p_{beam} = 1.5, 1.7, 2.5 & 3.3 GeV/c

Feasibility studies: time-like proton form factors @ PANDA Cut configuration & Signal efficiency

	MVA utilizing Boosted Decision Trees (BDT)								
	p _{beam} [GeV/c]	$M_{inv}(\mu^+\mu^-)$ [GeV ²]	$\left \varphi^{+} - \varphi^{-} \right $ [DEG]	(θ+θ ⁻) _{CM} [DEG]	BDT	Signal efficiency ε	ε _B [10 ⁻⁶]	S-B ratio	
"Loose" "Medium"	1.5]2.1 ; 2.4[]175 ; 185[]179.65 ; 185[> 0.300 > 0.340	0.369 0.227	17.7 6.0	1:10 1:5	
"Loose" "Medium"	1.7]2.2 ; 2.5[> 0.335 > 0.343	0.274 0.245	11.2 9.04	1:10 1:9	
"Medium" "Tight"	2.5]2.4 ; 2.8[1179 () · 185[> 0.230 > 0.234	0.391 0.312	67.2 61.3	1:31 1:29
"Loose" "Medium"	3.3]2.6 ; 3.1[]1, 7,0 , 100[> 0.300 > 0.306	0.372 0.349	23.6 20.4	1:8 1:7	

Background subtraction possible! -> Influence of background fluctuations?

How to study the effect of background fluctuations on the statistical precision of R, $|G_E| \& |G_M|$?

Analysis based on MVA: Background suppression factors ~ 10⁻⁶

- > Physical expectation: up to **10**¹¹ events
- Simulation: 10⁸ events

Construct background distributions with expected statistics after full analysis

Change cut on BDT response for both B1 and B2

Background subtraction from reconstructed signal (S2):

S2 + (B2-B1)

Study *effect of fluctuations* in

background data samples on the **precision of** $|G_E|$, $|G_M|$ & R.

How to study the effect of background fluctuations on the statistical precision of R, $|G_E| \& |G_M|$?

Analysis:

Precision of $|G_E|$, $|G_M|$ and $R=|G_E|/|G_M|$

@ p_{beam} = 1.5, 1.7, 2.5 & 3.3 GeV/c

Feasibility studies: time-like proton form factors @ PANDA Statistical precision on $R=|G_E|/|G_M|$

FIRST FIT FUNCTION

Iris Zimmermann, Helmholtz-Institut Mainz

Feasibility studies: time-like proton form factors @ PANDA Statistical precision on $|G_E| \& |G_M|$

SECOND FIT FUNCTION

Fit function 2: Fit parameters are $|G_E| \& |G_M|$

$$f_B(x) \propto C_1 \cdot \left[\frac{1}{\tau} (1 - \beta^2 x^2) \cdot P_1^2 + \left(1 + \frac{4m_\mu}{s} + \beta^2 x^2 \right) P_0^2 \right]$$

2 Direct extraction of $|G_E| \& |G_M|$ from efficiency corrected signal angular distribution after background subtraction

p_{beam} = 1.5 GeV/c MVA "Medium cuts"

Integrated luminosity: L = 2 fb⁻¹ **2** $|G_E| = 0.1433 \pm 0.0055$ $|G_M| = 0.1388 \pm 0.0028$ $\Delta |G_E| / |G_E| = 3.81\%$

 $\Delta |G_{\rm M}| / |G_{\rm M}| = 1.98\%$

Statistical precision on R=|G_E|/|G_M|

PRELIMINARY

signal pollution = $\frac{B2 - B1}{S2 + B2 - B1}$

p _{beam} [GeV/c]	Cut configuration	R±∆R	Δ R/R [%]	χ²/ndf	signal pollution [%]
1.5	"Loose" "Medium"	$\begin{array}{c} 1.008 \pm 0.052 \\ 1.032 \pm 0.060 \end{array}$	5.14 5.77	1.193 0.260	0.36 0.05
1.7	"Loose"	0.921 ± 0.080	8.64	2.012	0.16
	"Medium"	0.969 ± 0.082	8.50	2.164	0.05
2.5	"Loose"	0.919±0.167	18.12	0.745	4.84
	"Tight"	0.924±0.158	17.06	0.436	2.02
3.3	"Loose"	1.165±0.293	25.16	1.005	3.04
	"Medium"	1.004±0.291	29.02	1.477	3.72

Precision

Statistical precision on |G_E|&|G_M| PRELIMINARY

p _{beam} [GeV/c]	Cut config.	G _E	$\Delta G_{E} $	$ G_E /\Delta G_E $ [%]	G _M	$\Delta G_M $	$ G_{\rm M} /\Delta G_{\rm M} $ [%]
1.5	"Medium"	0.1433	0.0055	3.81	0.1388	0.0028	1.98
1.7	"Medium"	0.1180	0.0071	6.01	0.1217	0.0031	2.52
2.5	"Tight"	0.0648	0.0085	13.11	0.0702	0.0029	4.09
3.3	"Medium"	0.0430	0.0091	21.15	0.0429	0.0033	7.76
Choose cut configuration at each p_{beam} with smallest signal pollution $= \frac{B2 - B1}{S2 + B2 - B1}$							

Systematic error: Effect of the binning

How does the mean value of R and its standard deviation depend on the binning?

- Resample histograms of S1, S2, B1, B2 with random number generator (TRandom3) 3000 times.
- Perform full analysis and extract R values and their errors
- Determine mean R and sigma from R distribution
- Repeat for different number of bins

Systematic error: Effect of the binning

How does the mean value of R and its standard deviation depend on the binning?

p_{beam} = 1.5 GeV/c, Medium Cuts Standard deviation Mean values of R b 0.1 1.4 Mean R 0.09 1.3 1.5 GeV/c, MVA, Medium cuts 1.5 GeV/c, MVA, Medium cuts 0.08 with BKG subtraction with BKG subtraction 1.2 0.07 1.1 0.06 0.05 0.04 0.9 0.03 0.8 0.02 0.7 0.01

0.6

4

8

6

10

12

14

0 8 18 22 4 6 10 12 14 Number of bins Number of bins Iris Zimmermann, Helmholtz-Institut Mainz

22

Systematic error: Effect of the binning

How does the mean value of R and its standard deviation depend on the binning?

Choose 6 bins or more -> determine deviation from 16 bins: Contribution to systematic error

Iris Zimmermann, Helmholtz-Institut Mainz

Iris Zimmermann, Helmholtz-Institut Mainz

Influence of the background distribution shape

How does the extracted value of R and its error depend on the background distribution shape?

- ✓ Expected number of events
- X Without real data no knowledge about the shape
- An attempt: Mirror background distributions around mean value of the histogram contents and perform analysis -> How do the results change?

Medium cuts, 1.5 GeV/c

Influence of the background distribution shape

How does the extracted value of R and its error depend on the background distribution shape?

Medium cuts, 1.5 GeV/c

Influence of the background distribution shape

How does the mean value of R and its error depend on the background distribution shape?

Medium cuts, 1.5 GeV/c

The influence of the background shape is visible in this "extreme" scenario

Feasibility studies: time-like proton form factors @ PANDA

Effective Form Factor of the proton

$$\overline{p}p \rightarrow \mu^+ \mu^-$$

Effective proton Form Factor

Highest precision on R, $ G_E \& G_M $				
q ² [GeV ²]	$ \mathbf{F}_{\mathbf{p}} \pm \Delta \mathbf{F}_{\mathbf{p}} $	$\frac{\Delta \mathbf{F}_{\mathbf{p}} / \mathbf{F}_{\mathbf{p}} }{[\%]}$		
5.08	0.1609 ± 0.0005	0.31		
5.40	0.1388 ± 0.0011	0.79		
6.77	0.0808 ± 0.0011	1.36		
8.20	0.0513 ± 0.0008	1.56		
	-PRELIMINA	ARY-		

Feasibility studies: time-like proton form factors @ PANDA

Statistical precision on R

$$\overline{p}p \rightarrow \mu^+ \mu^-$$

World data on $R = |G_E|/|G_M|$ ³ BaBar

2

Total Precision ∆R/R						
s [GeV ²]	Stat.	Binning	Total			
5.08	5.8 %	1.5 %	6.0 %			
5.40	8.5 %	0.3 %	8.5 %			
6.77	17.1 %	4.5 %	17.7 %			
8.20	29.0 %	4.1 %	29.3 %			

-PRELIMINARY-

Feasibility studies: time-like proton form factors @ PANDA Summary & Outlook

 $\overline{p}p \to \mu^+ \mu^- \qquad \overline{p}p \to \pi^+ \pi^-$

- Monte Carlo simulation & analysis for signal and main background channel
- > Feasibility studies on $\mu^+\mu^-$:
 - ➢ At p_{beam} between 1.5 and 3.3 GeV/c a statistical precision for
 - R between 5.8% and 29.0% (total precision: 6.0% and 29.3%)
 - \rightarrow |G_M| between 2.0% and 7.8%
 - \rightarrow |G_E| between 3.8% and 21.2%
 - **Effective proton form factor between 0.3% and 1.6%**

could be achieved.

- Check contribution of radiative corrections in simulation (PHOTOS)
- **Day-1** EMP physics: Study for muon channel at 1.5 GeV/c in progress
- Release Note has been updated and is under review within the working group
- Complete **PANDA reviewing process for journal publication** will **start soon**

Thank you for your attention!

Fitting the efficiency corrected signal angular distributions

Iris Zimmermann, Helmholtz-Institut Mainz

Iris Zimmermann, Helmholtz-Institut Mainz

Data on the time-like proton form factor ratio $R=|G_E|/|G_M|$

BaBar: Phys. Rev. D88 072009 LEAR: Nucl.Phys.J., B411:3-32. 1994 BESIII: arXiv:1504.02680. 2015 CMD-3: arXiv:1507.08013v2 (2015) @ BaBar (SLAC): $e^+e^- \rightarrow \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$

data collection at low energies

Data from BaBar & LEAR show inconsistencies

- @ BESIII: $e^+e^- \rightarrow \overline{p}p$
- Measurement at different energies
- Uncertainties comparable to previous experiments
- @ CMD-3 (VEPP2000 collider, BINP):
- Energy scan $\sqrt{s} = 1 2 \ GeV$
- Uncertaincy comparable to the measurement by BaBar

Data on the time-like proton form factor ratio $R = |G_F| / |G_M|$

@ BaBar (SLAC): $e^+e^- \rightarrow \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$

data collection at low energies

Data from BaBar & LEAR show inconsistencies

@ BESIII: $e^+e^- \rightarrow \overline{p}p$

- Measurement at different energies
- Uncertainties comparable to previous experiments

BaBar: Phys. Rev. D88 LEAR: Nucl.Phys.J., B4 **BESIII**: arXiv:1504.026

Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis: Background studies

$$\overline{p}p \rightarrow \pi^+\pi^-$$

- > New event generator developed by Mainz working group (M. Zambrana et al.)
- Based on two different parametrizations

Low energy	Transistion region	High energy
0.79 Data: Eisenhandler et. al., NP B96 (1975)	2.43 5	.00 12.00 p _{beam} (GeV/c) A. Eide et. al., NP B60(1973) T. Buran et. al., NPB 116(1976) C. White et. al., PRD 49(1994)
Legendre Model: polynomial fit	Linear interpolation	Regge Theory J. Van de Wiele and S. Ong, EPJA 46 (2010)

Feasibility studies: time-like proton form factors @ PANDA Background

Background including three-body final states: kinematically very different from signal

Background of two heavy charged particles (K⁺K⁻, etc.) in the final state:

- Cross section is high, but...
- Detector response (Straw Tube Tracker, Cherenkov detector, ...) very different from signal

The most challenging background is $\overline{p}p \rightarrow \pi^+\pi^-$ due to:

- Kinematically very similar to signal
- > **Detector response very similar** to signal
- Cross section is by a factor of 10⁶ higher than signal cross section

Feasibility studies: time-like proton form factors @ PANDA Multivariate Data Classification (MVA)

1) <u>Training of the classifiers:</u>

- well-known training data samples (signal & background)
- a set of input variables for training, testing and evaluation:
 - ► Kinematical variables (invariant mass, $(\theta^+ + \theta^-)_{CM}$, $|\varphi^+ \varphi^-|$)
 - Detector observables from Muon System, EMC, Straw Tube Tracker
- Boosted Decision Trees show best performance
- 2) <u>Application</u> of trained Boosted Decision Trees on reconstructed data samples:
 - Cuts on BDT response & kinematical variables:

Optimization of the Signal/Background separation

Receiver Operating Characteristic (ROC)

BDT(*G*): Boosted Decision Trees using gradient (adaptive) boosting technique *CFMlpANN*: Neural network *Fisher*: linear discriminant analysis