

Final results of the analysis of charged pion pair production in proton and antiproton annihilation within an effective meson theory

> Supervisors: Egle Tomasi-Gustafsson Dominique Marchand Collaborator: Yury Bystritskiy

Panda (*P*roton annihilation at Darmstadt)

Content

Introduction

Motivation

Effective meson theory and Crossing symmetry

Results for Charged particles pbar p $\rightarrow \pi_{+}\pi_{-}$, $\pi_{-}p \rightarrow p \pi_{-}$, K+K-

- Angular distribution
- S-dependence

Summary

Panda (Proton annihilation at Darmstadt)

Motivation: pbar p -> $\pi^+\pi^-$

- The reaction $\overline{p}p \rightarrow e^+e^-$ allows to measure electromagnetic proton form factors.
- The reaction $\bar{p}p \rightarrow \pi^+\pi^-$ is the main background :
 - has a large cross section,
 - contains information on the quark content of the proton
 - allow to test different QCD models

It is necessary to fully understand the process $ar{p}p
ightarrow \pi^+\pi^-$.

Panda (Proton annihilation at Darmstadt) Motivation: model for $\pi^+\pi^-$

Few experimental data at the PANDA energies to constrain the models

3

Model of production $\pi^+\pi^-$

$$\frac{d\sigma}{d\Omega} = \frac{1}{2^8 \pi^2} \frac{1}{s} \frac{\beta_\pi}{\beta_p} \overline{|\mathcal{M}|^2}$$

 $\mathcal{M}=\mathcal{M}_n+\mathcal{M}_{\Delta^0}+\mathcal{M}_{\Delta^{++}}+\mathcal{M}_
ho.$

$$F_{N,\Delta}(x) = \frac{\mathcal{N}_{N,\Delta} \cdot M_0^4}{\left[(x - \Lambda_{N,\Delta}^2) \log \frac{(x - \Lambda_{N,\Delta}^2)}{\Lambda_{QCD}^2} \right]^2},$$

- → logarithm form factors
- → no Regge factors
 - Regge factors not well extrapolation to time like region
 - Regge factors give none physic parameters
- → not yet in Regge regime

$$x = s, t, u$$

 $M_0 = 3.86$ GeV is a scale parameter $\Lambda_{QCD} = 0.3$ GeV is the QCD scale parameter

Results and Comparison

Model comparison

Same sets of data described by the model from ref: EPJ A 46 (2010) , 291-298

 The logarithmic form factors have better data description at forward and backward region

Components of this model

Crossing symmetry of the model

Phys. Rev. 181, 1794 (1969)

using crossing symmetry
 from pπ- elastic to get
 more experiment data
 in the backward region

S-dependence $pp \rightarrow \pi + \pi$ -

compare to quark counting rules at 90 degree

PRL (1973) 31. 18.

S. J. Brodsky, G. R. Farrar

Scaling Laws at Large Transverse Momentum

LETTERE AL NUOVO CIMENTO (1973) 5 14

V. A. Matveev et al.

Automodelity in Strong Interactions.

$$d\sigma/dt \sim s^{2-n} f(t/s)$$

 $d\sigma/dt \sim s-8 f(t/s)$

Calculation $pp \rightarrow K+K-$

Total cross section pbar $p \rightarrow \pi + \pi$ -

- Black dashed line modified from A Dbeyssi PhD $\sigma = a \cdot e^{-(b \cdot p_{lab} + c \cdot p_{lab}^2 + d)} + \underbrace{\frac{e}{p_{lab}}}_{\text{Added term}}$
 - Red solid line our model
 - Black solid line -generator
 <u>Same figure from Page 3</u>
 Yellow points from the integration of reduced angular distribution.

Summary

- We have built a promising model based on effective Lagrangian to describe 2 meson production in pbar p annihilation

- We reproduced existing π + π data
- We reproduced π +p, π -p using crossing symmetry
- Charged kaon channel obtained from SU3 symmetry: K+K-

- Encouraging results on angular distributions and the expected s dependence have been obtained

