
Prototype of an online track and event

reconstruction scheme for the PANDA

experiment at FAIR

Project in Computational Science (10 weeks)

Björn Andersson Johan Nordström

Supervisors: Michael Papenbrock, Karin Schönning

March 6, 2017

Uppsala University

1

Table of contents

1. Project introduction

2. Event reconstruction algorithms

3. Implementation details

4. Performance analysis

5. Summary and outlook

2

Project introduction

Project introduction

• PANDA experiment: event rates up to 20MHz, event size

10kB

• Data rate: 200GB/s

• Reduce data rate with a completely software based trigger

3

Project introduction

• PANDA experiment: event rates up to 20MHz, event size

10kB

• Data rate: 200GB/s

• Reduce data rate with a completely software based trigger

3

Project introduction

• PANDA experiment: event rates up to 20MHz, event size

10kB

• Data rate: 200GB/s

• Reduce data rate with a completely software based trigger

3

Background

• Project goal: Prototype of an online track and event

reconstruction scheme for the PANDA experiment.

• Requirements:

• Fast and efficient

• Scalable

4

Background

• Project goal: Prototype of an online track and event

reconstruction scheme for the PANDA experiment.

• Requirements:

• Fast and efficient

• Scalable

4

Background

• Project goal: Prototype of an online track and event

reconstruction scheme for the PANDA experiment.

• Requirements:

• Fast and efficient

• Scalable

4

Background

• Project goal: Prototype of an online track and event

reconstruction scheme for the PANDA experiment.

• Requirements:

• Fast and efficient

• Scalable

4

Methodology

• Generation of semi-realistic data

• Prototype event reconstruction algorithms

• Benchmarking of algorithms

5

Methodology

• Generation of semi-realistic data

• Prototype event reconstruction algorithms

• Benchmarking of algorithms

5

Methodology

• Generation of semi-realistic data

• Prototype event reconstruction algorithms

• Benchmarking of algorithms

5

Relevant sub-detectors

Figure 1: The PANDA Detector

6

Straw Tube Tracker

Figure 2: Cross section of STT with trajectories 7

Generated data structure

• Sequence of STT hits

class Hit {

int strawID;

float timeStamp;

};

• Hyperons → displaced vertices

• Hits generated in lines and V-shapes

• Additional noise hits.

8

Generated data structure

• Sequence of STT hits

class Hit {

int strawID;

float timeStamp;

};

• Hyperons → displaced vertices

• Hits generated in lines and V-shapes

• Additional noise hits.

8

Generated data structure

• Sequence of STT hits

class Hit {

int strawID;

float timeStamp;

};

• Hyperons → displaced vertices

• Hits generated in lines and V-shapes

• Additional noise hits.

8

Generated data structure

• Sequence of STT hits

class Hit {

int strawID;

float timeStamp;

};

• Hyperons → displaced vertices

• Hits generated in lines and V-shapes

• Additional noise hits.

8

Event intermixing

Figure 3: Illustration by T. Stockmanns.

Event intermixing is simulated by incrementing the timestamps

with:

t → t + ∆t + ξ, ξ ∼ N (0, σ2).

9

Displaced vertices

Λ

Λ

π−

p

π+

p

K−

K+

Ω−

Ω
+

pp

Figure 4: Proton Anti-proton reaction.

10

Event reconstruction algorithms

Event reconstruction

• Three different algorithms

• Clustering of STT hits based on position in space and time

• Track reconstruction

• Displaced vertex detection (at clustering stage)

11

Event reconstruction

• Three different algorithms

• Clustering of STT hits based on position in space and time

• Track reconstruction

• Displaced vertex detection (at clustering stage)

11

Event reconstruction

• Three different algorithms

• Clustering of STT hits based on position in space and time

• Track reconstruction

• Displaced vertex detection (at clustering stage)

11

Clustering

• Neighbourhood

relation in both

space and time

• Clustering N

elements → time

consuming for

large N.

12

Clustering

• Neighbourhood

relation in both

space and time

• Clustering N

elements → time

consuming for

large N.

12

Parallel clustering

• Proposed solution: Split hit stream into bins and cluster

separately

• Assumption (*):

• Time difference between two STT hits in the same event can

not exceed STT response time (≈ 250 ns)

• Place STT hits in multiple different bins so that (*) holds.

13

Parallel clustering

• Proposed solution: Split hit stream into bins and cluster

separately

• Assumption (*):

• Time difference between two STT hits in the same event can

not exceed STT response time (≈ 250 ns)

• Place STT hits in multiple different bins so that (*) holds.

13

Parallel clustering

• Proposed solution: Split hit stream into bins and cluster

separately

• Assumption (*):

• Time difference between two STT hits in the same event can

not exceed STT response time (≈ 250 ns)

• Place STT hits in multiple different bins so that (*) holds.

13

Parallel clustering

• Proposed solution: Split hit stream into bins and cluster

separately

• Assumption (*):

• Time difference between two STT hits in the same event can

not exceed STT response time (≈ 250 ns)

• Place STT hits in multiple different bins so that (*) holds.

13

Track reconstruction

• Track reconstruction through modified version of

STTCellTrackFinder (Schumann, FZ Jülich)

• Simplification: Straight particle trajectories (Line fitting)

14

Track reconstruction

• Track reconstruction through modified version of

STTCellTrackFinder (Schumann, FZ Jülich)

• Simplification: Straight particle trajectories (Line fitting)

14

Cellular automaton

Figure 5: Illustration showing four steps in the track finding cellular automaton.

15

Displaced vertex detection

Two cases:

• An ambiguous node with exactly two possible IDs

• A tracklet with a high mean square error to the curve fit

16

Displaced vertex detection

Two cases:

• An ambiguous node with exactly two possible IDs

• A tracklet with a high mean square error to the curve fit

16

Implementation details

Target hardware

• Various computing hardware is in consideration

• Prototype uses CPU cluster

• Suitable for developed algorithms

• Efficient to prototype in

• Benchmarking hardware available

17

Target hardware

• Various computing hardware is in consideration

• Prototype uses CPU cluster

• Suitable for developed algorithms

• Efficient to prototype in

• Benchmarking hardware available

17

Target hardware

• Various computing hardware is in consideration

• Prototype uses CPU cluster

• Suitable for developed algorithms

• Efficient to prototype in

• Benchmarking hardware available

17

Target hardware

• Various computing hardware is in consideration

• Prototype uses CPU cluster

• Suitable for developed algorithms

• Efficient to prototype in

• Benchmarking hardware available

17

Target hardware

• Various computing hardware is in consideration

• Prototype uses CPU cluster

• Suitable for developed algorithms

• Efficient to prototype in

• Benchmarking hardware available

17

Software architecture

• Independent C++ project

• Hybrid parallelization

• Message Passing Interface (MPI) (non-shared memory)

• OpenMP (shared memory)

• Applicable in multi-core CPU environments

• Modular

18

Software architecture

• Independent C++ project

• Hybrid parallelization

• Message Passing Interface (MPI) (non-shared memory)

• OpenMP (shared memory)

• Applicable in multi-core CPU environments

• Modular

18

Software architecture

• Independent C++ project

• Hybrid parallelization

• Message Passing Interface (MPI) (non-shared memory)

• OpenMP (shared memory)

• Applicable in multi-core CPU environments

• Modular

18

Software architecture

• Independent C++ project

• Hybrid parallelization

• Message Passing Interface (MPI) (non-shared memory)

• OpenMP (shared memory)

• Applicable in multi-core CPU environments

• Modular

18

Software architecture

• Independent C++ project

• Hybrid parallelization

• Message Passing Interface (MPI) (non-shared memory)

• OpenMP (shared memory)

• Applicable in multi-core CPU environments

• Modular

18

Software architecture

• Independent C++ project

• Hybrid parallelization

• Message Passing Interface (MPI) (non-shared memory)

• OpenMP (shared memory)

• Applicable in multi-core CPU environments

• Modular

18

Parallel structure

• Hit data sequence is divided into stacks

• Stacks processed in four main stages

Split data
between nodes

Clusterization Interprocess
communication

MPI OpenMP MPI

Event
reconstruction

OpenMP

• Load balancing by master/slave model

19

Parallel structure

• Hit data sequence is divided into stacks

• Stacks processed in four main stages

Split data
between nodes

Clusterization Interprocess
communication

MPI OpenMP MPI

Event
reconstruction

OpenMP

• Load balancing by master/slave model

19

Parallel structure

• Hit data sequence is divided into stacks

• Stacks processed in four main stages

Split data
between nodes

Clusterization Interprocess
communication

MPI OpenMP MPI

Event
reconstruction

OpenMP

• Load balancing by master/slave model

19

Parallel clustering pipeline

Time-based
bin stacking
(seq.)

Parallel clustering
(OpenMP)

Data stream
splitting
(MPI)

Merging of
edge clusters
(MPI)

20

Performance analysis

Performance metrics

• MPI and OpenMP components are analyzed separately

• Performance metrics:

• Efficiency: E (N) = τ1

NτN

• Speedup: S(N) = τ1

τN
.

• τ1 and τN are the execution times using 1 and N computing

nodes respectively for a fixed problem size.

21

Performance metrics

• MPI and OpenMP components are analyzed separately

• Performance metrics:

• Efficiency: E (N) = τ1

NτN

• Speedup: S(N) = τ1

τN
.

• τ1 and τN are the execution times using 1 and N computing

nodes respectively for a fixed problem size.

21

Performance metrics

• MPI and OpenMP components are analyzed separately

• Performance metrics:

• Efficiency: E (N) = τ1

NτN

• Speedup: S(N) = τ1

τN
.

• τ1 and τN are the execution times using 1 and N computing

nodes respectively for a fixed problem size.

21

Performance metrics

• MPI and OpenMP components are analyzed separately

• Performance metrics:

• Efficiency: E (N) = τ1

NτN

• Speedup: S(N) = τ1

τN
.

• τ1 and τN are the execution times using 1 and N computing

nodes respectively for a fixed problem size.

21

Performance metrics

• MPI and OpenMP components are analyzed separately

• Performance metrics:

• Efficiency: E (N) = τ1

NτN

• Speedup: S(N) = τ1

τN
.

• τ1 and τN are the execution times using 1 and N computing

nodes respectively for a fixed problem size.

21

Non-shared memory efficiency (MPI)

• 5000 STT hits per stack

→ optimal efficiency

• Good efficiency!

5 10 15
0

0.5

1

Number of MPI nodes
E

ffi
ci

en
cy

Ideal

8000 hits per stack

5000 hits per stack

100 hits per stack

22

Non-shared memory efficiency (MPI)

• 5000 STT hits per stack

→ optimal efficiency

• Good efficiency!

5 10 15
0

0.5

1

Number of MPI nodes
E

ffi
ci

en
cy

Ideal

8000 hits per stack

5000 hits per stack

100 hits per stack

22

Non-shared memory speedup (MPI)

2 4 6 8 10 12 14
0

5

10

15

Number of MPI nodes

S
p

ee
d

u
p

Actual
Ideal

23

Shared memory speedup (OpenMP)

• Quite low speedup

• Will improve with more

realistic algorithms.

0 5 10 15
0

5

10

15

Number of threads
E

ffi
ci

en
cy

Actual
Ideal

24

Shared memory speedup (OpenMP)

• Quite low speedup

• Will improve with more

realistic algorithms.

0 5 10 15
0

5

10

15

Number of threads
E

ffi
ci

en
cy

Actual
Ideal

24

Parallel clustering run time

500 1,000 1,500 2,000

0

1

2

3
·104

Number of hits

E
xe

cu
ti

on
ti

m
e

Clustering

Serial clustering
Parallel clustering

Figure 6: Execution time of the clustering algorithms.

25

Summary and outlook

Summary

• Prototype of an online track and event reconstruction scheme.

• Hybrid parallelization model (MPI/OpenMP)

• Possible extension of STTCellTrackFinder

• Promising scaling.

26

Summary

• Prototype of an online track and event reconstruction scheme.

• Hybrid parallelization model (MPI/OpenMP)

• Possible extension of STTCellTrackFinder

• Promising scaling.

26

Summary

• Prototype of an online track and event reconstruction scheme.

• Hybrid parallelization model (MPI/OpenMP)

• Possible extension of STTCellTrackFinder

• Promising scaling.

26

Summary

• Prototype of an online track and event reconstruction scheme.

• Hybrid parallelization model (MPI/OpenMP)

• Possible extension of STTCellTrackFinder

• Promising scaling.

26

Outlook

• Modify the event reconstruction algorithms to handle realistic

data.

• Integrate the system with the PANDA simulation framework

(PandaRoot).

• Investigate the use of a dynamic load balancing scheme.

• More thorough performance analysis on larger scale systems

• Look into frameworks that allow for streaming data

processing.

• The report is available as an internal PANDA document.

27

Outlook

• Modify the event reconstruction algorithms to handle realistic

data.

• Integrate the system with the PANDA simulation framework

(PandaRoot).

• Investigate the use of a dynamic load balancing scheme.

• More thorough performance analysis on larger scale systems

• Look into frameworks that allow for streaming data

processing.

• The report is available as an internal PANDA document.

27

Outlook

• Modify the event reconstruction algorithms to handle realistic

data.

• Integrate the system with the PANDA simulation framework

(PandaRoot).

• Investigate the use of a dynamic load balancing scheme.

• More thorough performance analysis on larger scale systems

• Look into frameworks that allow for streaming data

processing.

• The report is available as an internal PANDA document.

27

Outlook

• Modify the event reconstruction algorithms to handle realistic

data.

• Integrate the system with the PANDA simulation framework

(PandaRoot).

• Investigate the use of a dynamic load balancing scheme.

• More thorough performance analysis on larger scale systems

• Look into frameworks that allow for streaming data

processing.

• The report is available as an internal PANDA document.

27

Outlook

• Modify the event reconstruction algorithms to handle realistic

data.

• Integrate the system with the PANDA simulation framework

(PandaRoot).

• Investigate the use of a dynamic load balancing scheme.

• More thorough performance analysis on larger scale systems

• Look into frameworks that allow for streaming data

processing.

• The report is available as an internal PANDA document.

27

Outlook

• Modify the event reconstruction algorithms to handle realistic

data.

• Integrate the system with the PANDA simulation framework

(PandaRoot).

• Investigate the use of a dynamic load balancing scheme.

• More thorough performance analysis on larger scale systems

• Look into frameworks that allow for streaming data

processing.

• The report is available as an internal PANDA document.

27

Questions

Questions?

28

Inter-process communication

ε ε

t0 t1 t2 t3

Figure 7: Ordered hit sequence by time.

• Stacks in different nodes → need interprocess-communication.

• Can be ignored if one allows to throw away a proportion of

events.

29

	Project introduction
	Event reconstruction algorithms
	Implementation details
	Performance analysis
	Summary and outlook

