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Project introduction

• PANDA experiment: event rates up to 20MHz, event size

10kB

• Data rate: 200GB/s

• Reduce data rate with a completely software based trigger
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Background

• Project goal: Prototype of an online track and event

reconstruction scheme for the PANDA experiment.

• Requirements:

• Fast and efficient

• Scalable
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Methodology

• Generation of semi-realistic data

• Prototype event reconstruction algorithms

• Benchmarking of algorithms
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Relevant sub-detectors

Figure 1: The PANDA Detector
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Straw Tube Tracker

Figure 2: Cross section of STT with trajectories 7



Generated data structure

• Sequence of STT hits

class Hit {

int strawID;

float timeStamp;

};

• Hyperons → displaced vertices

• Hits generated in lines and V-shapes

• Additional noise hits.
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Event intermixing

Figure 3: Illustration by T. Stockmanns.

Event intermixing is simulated by incrementing the timestamps

with:

t → t + ∆t + ξ, ξ ∼ N (0, σ2).
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Displaced vertices
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Figure 4: Proton Anti-proton reaction.
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Event reconstruction algorithms



Event reconstruction

• Three different algorithms

• Clustering of STT hits based on position in space and time

• Track reconstruction

• Displaced vertex detection (at clustering stage)

11



Event reconstruction

• Three different algorithms

• Clustering of STT hits based on position in space and time

• Track reconstruction

• Displaced vertex detection (at clustering stage)

11



Event reconstruction

• Three different algorithms

• Clustering of STT hits based on position in space and time

• Track reconstruction

• Displaced vertex detection (at clustering stage)

11



Clustering

• Neighbourhood

relation in both

space and time

• Clustering N

elements → time

consuming for

large N.
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Parallel clustering

• Proposed solution: Split hit stream into bins and cluster

separately

• Assumption (*):

• Time difference between two STT hits in the same event can

not exceed STT response time ( ≈ 250 ns)

• Place STT hits in multiple different bins so that (*) holds.
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Track reconstruction

• Track reconstruction through modified version of

STTCellTrackFinder (Schumann, FZ Jülich)

• Simplification: Straight particle trajectories (Line fitting)
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Cellular automaton

Figure 5: Illustration showing four steps in the track finding cellular automaton.
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Displaced vertex detection

Two cases:

• An ambiguous node with exactly two possible IDs

• A tracklet with a high mean square error to the curve fit
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Implementation details



Target hardware

• Various computing hardware is in consideration

• Prototype uses CPU cluster

• Suitable for developed algorithms

• Efficient to prototype in

• Benchmarking hardware available
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Software architecture

• Independent C++ project

• Hybrid parallelization

• Message Passing Interface (MPI) (non-shared memory)

• OpenMP (shared memory)

• Applicable in multi-core CPU environments

• Modular
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Parallel structure

• Hit data sequence is divided into stacks

• Stacks processed in four main stages

Split data 
between nodes

Clusterization Interprocess 
communication

MPI OpenMP MPI

Event
reconstruction

OpenMP

• Load balancing by master/slave model
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Parallel clustering pipeline

Time-based
bin stacking
(seq.)

Parallel clustering 
(OpenMP)

Data stream
splitting 
(MPI)

Merging of 
edge clusters
(MPI)
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Performance analysis



Performance metrics

• MPI and OpenMP components are analyzed separately

• Performance metrics:

• Efficiency: E (N) = τ1

NτN

• Speedup: S(N) = τ1

τN
.

• τ1 and τN are the execution times using 1 and N computing

nodes respectively for a fixed problem size.
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Non-shared memory efficiency (MPI)

• 5000 STT hits per stack

→ optimal efficiency

• Good efficiency!
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Non-shared memory speedup (MPI)
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Shared memory speedup (OpenMP)

• Quite low speedup

• Will improve with more

realistic algorithms.
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Parallel clustering run time
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Figure 6: Execution time of the clustering algorithms.
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Summary and outlook



Summary

• Prototype of an online track and event reconstruction scheme.

• Hybrid parallelization model (MPI/OpenMP)

• Possible extension of STTCellTrackFinder

• Promising scaling.
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Outlook

• Modify the event reconstruction algorithms to handle realistic

data.

• Integrate the system with the PANDA simulation framework

(PandaRoot).

• Investigate the use of a dynamic load balancing scheme.

• More thorough performance analysis on larger scale systems

• Look into frameworks that allow for streaming data

processing.

• The report is available as an internal PANDA document.
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Questions

Questions?
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Inter-process communication

ε ε

t0 t1 t2 t3

Figure 7: Ordered hit sequence by time.

• Stacks in different nodes → need interprocess-communication.

• Can be ignored if one allows to throw away a proportion of

events.
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