UFPSALA
Prototype of an online track and event UNIVERSITET

reconstruction scheme for the PANDA
experiment at FAIR

Project in Computational Science (10 weeks)

Bjorn Andersson Johan Nordstrom
Supervisors: Michael Papenbrock, Karin Schonning

March 6, 2017

Uppsala University

Table of contents

1. Project introduction

2. Event reconstruction algorithms
3. Implementation details

4. Performance analysis

5. Summary and outlook

Project introduction

Project introduction

e PANDA experiment: event rates up to 20MHz, event size
10kB

Project introduction

e PANDA experiment: event rates up to 20MHz, event size
10kB

e Data rate: 200GB/s

Project introduction

e PANDA experiment: event rates up to 20MHz, event size
10kB

e Data rate: 200GB/s

e Reduce data rate with a completely software based trigger

Background

e Project goal: Prototype of an online track and event
reconstruction scheme for the PANDA experiment.

Background

e Project goal: Prototype of an online track and event
reconstruction scheme for the PANDA experiment.

e Requirements:

Background

e Project goal: Prototype of an online track and event
reconstruction scheme for the PANDA experiment.
e Requirements:

e Fast and efficient

Background

e Project goal: Prototype of an online track and event
reconstruction scheme for the PANDA experiment.
e Requirements:

e Fast and efficient

e Scalable

Methodology

e Generation of semi-realistic data

Methodology

e Generation of semi-realistic data

e Prototype event reconstruction algorithms

Methodology

e Generation of semi-realistic data
e Prototype event reconstruction algorithms

e Benchmarking of algorithms

Relevant sub-detectors

13 m (43 ft)

Figure 1: The PANDA Detector

Straw Tube Tracker

Figure 2: Cross section of STT with trajectories 7

Generated data structure

e Sequence of STT hits

class Hit {
int strawlD;

float timeStamp;

Generated data structure

e Sequence of STT hits

class Hit {
int strawlD;

float timeStamp;
1

e Hyperons — displaced vertices

Generated data structure

e Sequence of STT hits

class Hit {
int strawlD;

float timeStamp;
1

e Hyperons — displaced vertices

e Hits generated in lines and V-shapes

Generated data structure

e Sequence of STT hits

class Hit {
int strawlD;

float timeStamp;
1

e Hyperons — displaced vertices
e Hits generated in lines and V-shapes

e Additional noise hits.

Event intermixing

mvo ILIEE EIEHEIE I TP

STT (MIIIIIIII@WHIHHIHHIW\HIHI 1NN

Event 1 Event 2 Event 3
Figure 3: lllustration by T. Stockmanns.

Event intermixing is simulated by incrementing the timestamps
with:
t—ot+At+& €~ N(0,0°).

Displaced vertices

Figure 4: Proton Anti-proton reaction.

10

Event reconstruction algorithms

Event reconstruction

e Three different algorithms

e Clustering of STT hits based on position in space and time

11

Event reconstruction

e Three different algorithms

e Clustering of STT hits based on position in space and time
e Track reconstruction

11

Event reconstruction

e Three different algorithms

e Clustering of STT hits based on position in space and time
e Track reconstruction
e Displaced vertex detection (at clustering stage)

11

Clustering

e Neighbourhood
relation in both 2
space and time

4
Apef

12

Clustering

e Neighbourhood

relation in both 21
space and time ®
e Clustering N
elements — time 97919 I
. 3 2
consuming for 5 670
4 3 610
large N.) pe
12
Y
5 7 D
5 7 8
5 BE

12

Parallel clustering

e Proposed solution: Split hit stream into bins and cluster

separately

13

Parallel clustering

e Proposed solution: Split hit stream into bins and cluster
separately

e Assumption (*):

13

Parallel clustering

e Proposed solution: Split hit stream into bins and cluster
separately
e Assumption (*):
e Time difference between two STT hits in the same event can

not exceed STT response time (= 250 ns)

13

Parallel clustering

e Proposed solution: Split hit stream into bins and cluster
separately
e Assumption (*):
e Time difference between two STT hits in the same event can

not exceed STT response time (&~ 250 ns)

e Place STT hits in multiple different bins so that (*) holds.

13

Track reconstruction

e Track reconstruction through modified version of
STTCellTrackFinder (Schumann, FZ Jilich)

14

Track reconstruction

e Track reconstruction through modified version of
STTCellTrackFinder (Schumann, FZ lJiilich)

e Simplification: Straight particle trajectories (Line fitting)

14

=
(=}
-
v
€
(=}
-
=i
(v}
~
©
=
o
®)

O
4

G
A.v <)> A.v <
@v A.v < > Aev
OS50 O
L=
A.v <[
= A@v (S >
LS
26

000
3050
000
6%
0229090
05920
N
A’Y <{
<
o0
3O

o6

.v,/. > P>
03990

>
> ;V’A”

< <
@ <{ >
Jdose
(P>
2850
>

098
(< P
e
070020
CEEm
6 5. 000
.v (g <40
0-0 - 0=
.v <('%)~ A.v (o)>
A@v A.v <{
e

0%e®
)
)

Figure 5: lllustration showing four steps in the track finding cellular automaton.

ii5)

Displaced vertex detection

Two cases:

e An ambiguous node with exactly two possible IDs

16

Displaced vertex detection

Two cases:

e An ambiguous node with exactly two possible IDs

e A tracklet with a high mean square error to the curve fit

16

Implementation details

Target hardware

e Various computing hardware is in consideration

17

Target hardware

e Various computing hardware is in consideration

e Prototype uses CPU cluster

17

Target hardware

e Various computing hardware is in consideration
e Prototype uses CPU cluster

e Suitable for developed algorithms

17

Target hardware

e Various computing hardware is in consideration
e Prototype uses CPU cluster

e Suitable for developed algorithms
e Efficient to prototype in

17

Target hardware

e Various computing hardware is in consideration
e Prototype uses CPU cluster

e Suitable for developed algorithms
e Efficient to prototype in

e Benchmarking hardware available

17

Software architecture

e Independent C++ project

18

Software architecture

e Independent C++ project
e Hybrid parallelization

18

Software architecture

e Independent C++ project
e Hybrid parallelization

e Message Passing Interface (MPI) (non-shared memory)

18

Software architecture

e Independent C++ project
e Hybrid parallelization

e Message Passing Interface (MPI) (non-shared memory)
e OpenMP (shared memory)

18

Software architecture

e Independent C++ project
e Hybrid parallelization

e Message Passing Interface (MPI) (non-shared memory)
e OpenMP (shared memory)

e Applicable in multi-core CPU environments

18

Software architecture

Independent C++ project

Hybrid parallelization

e Message Passing Interface (MPI) (non-shared memory)
e OpenMP (shared memory)

Applicable in multi-core CPU environments

Modular

18

Parallel structure

e Hit data sequence is divided into stacks

19

Parallel structure

e Hit data sequence is divided into stacks

e Stacks processed in four main stages

Split data Clusterization Interprocess Event
between nodes communication reconstruction
0o 0o
O O O O
05O OnO
MPI OpenMP MPI OpenMP

19

Parallel structure

e Hit data sequence is divided into stacks

e Stacks processed in four main stages

Split data Clusterization Interprocess Event
between nodes communication reconstruction
0o 0o
O O O O
05O OnO
MPI OpenMP MPI OpenMP

e Load balancing by master/slave model

19

Parallel clustering pipeline

Data stream / ¢ \

splitting
(MPI)

Time-based
bin stacking

(seq.) HH
'

Parallel clustering
(OpenMP)

csecuses [1] O— [O 1

(MPI)

20

Performance analysis

Performance metrics

e MPI and OpenMP components are analyzed separately

21

Performance metrics

e MPI and OpenMP components are analyzed separately

e Performance metrics:

21

Performance metrics

e MPI and OpenMP components are analyzed separately

e Performance metrics:

e Efficiency: E(N) = e

21

Performance metrics

e MPI and OpenMP components are analyzed separately

e Performance metrics:
e Efficiency: E(N) =

Nty

e Speedup: S(N) = 2.

21

Performance metrics

e MPI and OpenMP components are analyzed separately

e Performance metrics:
e Efficiency: E(N) = X

e Speedup: S(N) =2

™

e 7 and Ty are the execution times using 1 and N computing
nodes respectively for a fixed problem size.

21

Non-shared memory efficiency (MPI)

1 - |
>
O
5]
e 5000 STT hits per stack 8 0.5 H___ Ideal -
— optimal efficiency L —e— 8000 hits per stack
—e— 5000 hits per stack
—e— 100 hits per stack
0 T T |

5 10 15
Number of MPI nodes

22

Non-shared memory efficiency (MPI)

1 [|
>
O
o
e 5000 STT hits per stack .© 0.5 d :
. . . t T eal
— optimal efficiency L —e 8000 hits per stack
. —e— 5000 hits per stack
|
e Good efficiency! 100 hits per stack
0 I I |

5 10 15
Number of MPI nodes

22

Non-shared memory speedup (MPI)

15 F—
—e— Actual -
-~~~ Ideal
o 10 :
3
o
O
Qo
m 57 |
0

Number of MPI nodes

23

Shared memory speedup (OpenMP)

15 || —e— Actual o
-~~~ Ideal
5 g
2 10 . B
_ 0 ’
e Quite low speedup e y

(i 5| e i

0 "./././0/”‘/.

Number of threads

24

Shared memory speedup (OpenMP)

T I
15 [| —e—Actual R
-~ |deal
>, -
s 10 . .
. 0 ’
e Quite low speedup 2 p
e Will improve with more ' 51 .- |
realistic algorithms. '*/./,/./0”/.
0 | | | |
0 5 10 15

Number of threads

24

Parallel clustering run time

Clusterin
104 &
3F I I T =
—eo— Serial clustering
0] —a— Parallel clustering
£ ol 2
-
=
.0
-
Sl 1
(0]
x
LLi
0 — L L |

| | | |
500 1,000 1,500 2,000

Number of hits
Figure 6: Execution time of the clustering algorithms.

25

Summary and outlook

e Prototype of an online track and event reconstruction scheme.

26

e Prototype of an online track and event reconstruction scheme.
e Hybrid parallelization model (MP1/OpenMP)

26

e Prototype of an online track and event reconstruction scheme.
e Hybrid parallelization model (MPI/OpenMP)
e Possible extension of STTCellTrackFinder

26

Prototype of an online track and event reconstruction scheme.
Hybrid parallelization model (MPl/OpenMP)
Possible extension of STTCellTrackFinder

Promising scaling.

26

e Modify the event reconstruction algorithms to handle realistic
data.

27

e Modify the event reconstruction algorithms to handle realistic
data.

e Integrate the system with the PANDA simulation framework
(PandaRoot).

27

e Modify the event reconstruction algorithms to handle realistic
data.

e Integrate the system with the PANDA simulation framework
(PandaRoot).

e Investigate the use of a dynamic load balancing scheme.

27

Modify the event reconstruction algorithms to handle realistic
data.

Integrate the system with the PANDA simulation framework
(PandaRoot).

Investigate the use of a dynamic load balancing scheme.

More thorough performance analysis on larger scale systems

27

e Modify the event reconstruction algorithms to handle realistic
data.

e Integrate the system with the PANDA simulation framework
(PandaRoot).

e Investigate the use of a dynamic load balancing scheme.
e More thorough performance analysis on larger scale systems

e Look into frameworks that allow for streaming data

processing.

27

e Modify the event reconstruction algorithms to handle realistic
data.

e Integrate the system with the PANDA simulation framework
(PandaRoot).

e Investigate the use of a dynamic load balancing scheme.
e More thorough performance analysis on larger scale systems

e Look into frameworks that allow for streaming data

processing.

e The report is available as an internal PANDA document.

27

Questions?

28

Inter-process communication

to T N N t3
_________ [
15 £

Figure 7: Ordered hit sequence by time.

e Stacks in different nodes — need interprocess-communication.
e Can be ignored if one allows to throw away a proportion of
events.

29

	Project introduction
	Event reconstruction algorithms
	Implementation details
	Performance analysis
	Summary and outlook

