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e PANDA experiment: event rates up to 20MHz, event size
10kB

e Data rate: 200GB/s

e Reduce data rate with a completely software based trigger
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e Project goal: Prototype of an online track and event
reconstruction scheme for the PANDA experiment.
e Requirements:

e Fast and efficient

e Scalable



Methodology

e Generation of semi-realistic data



Methodology

e Generation of semi-realistic data

e Prototype event reconstruction algorithms



Methodology

e Generation of semi-realistic data
e Prototype event reconstruction algorithms

e Benchmarking of algorithms



Relevant sub-detectors

13 m (43 ft)

Figure 1: The PANDA Detector



Straw Tube Tracker

Figure 2: Cross section of STT with trajectories 7
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Generated data structure

e Sequence of STT hits

class Hit {
int strawlD;

float timeStamp;
1

e Hyperons — displaced vertices
e Hits generated in lines and V-shapes

e Additional noise hits.



Event intermixing
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Figure 3: lllustration by T. Stockmanns.

Event intermixing is simulated by incrementing the timestamps
with:
t—ot+At+& €~ N(0,0°).



Displaced vertices

Figure 4: Proton Anti-proton reaction.
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Event reconstruction

e Three different algorithms

e Clustering of STT hits based on position in space and time
e Track reconstruction
e Displaced vertex detection (at clustering stage)
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Clustering

e Neighbourhood
relation in both 2
space and time

4
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Clustering
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Parallel clustering

e Proposed solution: Split hit stream into bins and cluster

separately
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Parallel clustering

e Proposed solution: Split hit stream into bins and cluster
separately
e Assumption (*):
e Time difference between two STT hits in the same event can

not exceed STT response time ( &~ 250 ns)

e Place STT hits in multiple different bins so that (*) holds.
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Track reconstruction

e Track reconstruction through modified version of
STTCellTrackFinder (Schumann, FZ Jilich)
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Track reconstruction

e Track reconstruction through modified version of
STTCellTrackFinder (Schumann, FZ lJiilich)

e Simplification: Straight particle trajectories (Line fitting)

14
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Figure 5: lllustration showing four steps in the track finding cellular automaton.
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Displaced vertex detection

Two cases:

e An ambiguous node with exactly two possible IDs
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Displaced vertex detection

Two cases:

e An ambiguous node with exactly two possible IDs

e A tracklet with a high mean square error to the curve fit
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Target hardware

e Various computing hardware is in consideration
e Prototype uses CPU cluster

e Suitable for developed algorithms
e Efficient to prototype in

e Benchmarking hardware available
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Software architecture

Independent C++ project

Hybrid parallelization

e Message Passing Interface (MPI) (non-shared memory)
e OpenMP (shared memory)

Applicable in multi-core CPU environments

Modular
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Parallel structure

e Hit data sequence is divided into stacks
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Parallel structure

e Hit data sequence is divided into stacks

e Stacks processed in four main stages

Split data Clusterization Interprocess Event
between nodes communication reconstruction
0o 0o
O O O O
05O OnO
MPI OpenMP MPI OpenMP

e Load balancing by master/slave model
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Parallel clustering pipeline

Data stream / ¢ \
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Performance metrics

e MPI and OpenMP components are analyzed separately
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e MPI and OpenMP components are analyzed separately

e Performance metrics:
e Efficiency: E(N) =
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e Speedup: S(N) = 2.
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Performance metrics

e MPI and OpenMP components are analyzed separately

e Performance metrics:
e Efficiency: E(N) = X

e Speedup: S(N) =2

™

e 7 and Ty are the execution times using 1 and N computing
nodes respectively for a fixed problem size.
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Non-shared memory efficiency (MPI)
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Non-shared memory speedup (MPI)

15 F—
—e— Actual -
-~~~ Ideal
o 10 :
3
o
O
Qo
m 57 |
0

Number of MPI nodes

23



Shared memory speedup (OpenMP)
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Shared memory speedup (OpenMP)
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Parallel clustering run time
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Figure 6: Execution time of the clustering algorithms.
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e Prototype of an online track and event reconstruction scheme.
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Prototype of an online track and event reconstruction scheme.
Hybrid parallelization model (MPl/OpenMP)
Possible extension of STTCellTrackFinder

Promising scaling.
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e Modify the event reconstruction algorithms to handle realistic
data.
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e Modify the event reconstruction algorithms to handle realistic
data.

e Integrate the system with the PANDA simulation framework
(PandaRoot).

e Investigate the use of a dynamic load balancing scheme.
e More thorough performance analysis on larger scale systems

e Look into frameworks that allow for streaming data

processing.

e The report is available as an internal PANDA document.
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Questions?
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Inter-process communication
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Figure 7: Ordered hit sequence by time.

e Stacks in different nodes — need interprocess-communication.
e Can be ignored if one allows to throw away a proportion of
events.
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