Cryostat design and heat loads

Alexey Bragin, Mikhail Kholopov
Budker Institute of Nuclear Physics, Novosibirsk, Russia

CDR meeting, May 2017

Branch Box

Cryogenic diagram

For the transfer line the most tubes were chosen to be DN15 STD, so $\mathrm{OD}=21.34 \mathrm{~mm}, \mathrm{ID}=15.8 \mathrm{~mm}$.

The valves are of PN25 type.
Valves stems have interceptions at $\sim 65 \mathrm{~K}$ temperatures.

Pressure drop about 0.006 bar at nominal operation

Heat transfer to the radiation shields is on return 50 K line.
The return line will have about 60 K

Total heat loads

Table 3 Heat loads on 4.5 K helium from both coils and the cryostat

Heat load from	Values
Thermal radiation on the LHe case, W	0.12
Support struts, W	13
Tie rods, W	0.05
Soldering connection of the cable (at least 6 short splices), W	0.12
Thermal radiation on the cryostat, W	0.015
Cryostat suspension, W	<0.1
Current leads, W	0.5
Measurements wires, W	<0.1
Heat bridges of the cryostat neck and others connections, W	<0.1
Total, W	$\sim \mathbf{1 4 . 1}$

Table 4 Heat loads on 50 K helium from both coils and the cryostat

Heat load from	Values
Thermal radiation on the shields from the vacuum vessel, W	10
Support struts, W	38
Tie rods, W	0.5
Thermal radiation on the cryostat shield, W	1.5
Cryostat suspension, W	2
Current leads, W	50
Measurements wires, W	0.5
Heat bridges of the cryostat neck and others connections, W	1
Total, W	~ 104
\multirow{3}Itwillbecorrectedafterdetaileddesionofthecurrentleads{}	

Table 5 Heat loads on 4.6 K helium from the Branch Box, the Feed Box and the transfer line

Heat load from	Values
Thermal radiation on 4.5 K surfaces from the shields on the FB and BB, W	0.15
Supports and suspensions, W	<2
Control Valves, W	15.2
Check Valves, W	0.9
Measurement wires, W	<0.01
Heat bridges of the cryostat neck and others connections, W	<1
Total, \boldsymbol{W}	19.26

Table 6 Heat loads on the 60 K helium (return line) from the Branch Box, the Feed Box and the transfer line

Heat load from	Values
Thermal radiation on the shields from the vacuum vessel, W	7
Support and suspensions, W	20
Control valves, W	38
Check valves, W	11
Measurement wires, W	<1
Heat bridges of the cryostat neck and others connections, W	5
Total, W	82

Total heat loads:
for 4.6 K He is 33.4 W

Mass rates: for 4.6 K He is $1.7 \mathrm{~g} / \mathrm{s}$ for 50 K He is $1.8 \mathrm{~g} / \mathrm{s}$

Design of the Branch Box, view 1

Design of the Branch Box, view 2

Design of the Feed Box, view 1

Design of the Feed Box, view 2

Design of the transfer line, view 1

Design of the transfer line, view 2

Design of the transfer line, view 3

Design of the transfer line, view 4

Interface (as example)


```
The working folder contains:
T_test.exe - executable code;
- Server.uir - user interface resources;
- Port.cfg - configuration file for RS232 connection;
- T_data.cfg - configuration file for temperature sensors (JB channels, data files etc.);
- Mntr.cfg - configuration file for JB channels (Pressure, GHe Flow, Vacuum);
- Field.dat - field ramping table;
- T_PROBES - temperature response curves folder.
```


SCW server application main functions:

- Monitoring of all cryostat \& magnet parameters;
- PSU's control \& monitoring;
- Cryo-compressors monitoring;
- Field ramping task;
- Software interlock logic;

Client/Server communication.

