Adding a Neutron Detector to HADES: First Geant3 Simulations

R. Holzmann, I. Koenig, G. Laskaris, J. Pietraszko

Design based on plastic scintillators by G. Laskaris & J. Pietraszko

Implementation in HGeant

- geometry
- materials
- hit definition

• Neutron hit analysis

- acceptance
- efficiency
- resolution
- n rescattering

Geometry in HGeant

(based on Ilse's FWDET implementation)

3 layers + charged-particle veto

cut: y-z plane at x=0

Neutron hits in HGeant

Geant3 run with GCalor hadronic interaction code

neutron rescattering in RICH backplane

clean neutron hit

Neutron hits in 10 cm plastic

Simulated neutron resolution

Simulated assuming: $\sigma_{TOF} = 0.5 ns$, $\sigma_{x,y,z} = 50 mm$, $\sigma_{vertex} = 10 mm$

angular resolution = $2^{\circ} - 3^{\circ}$

p resolution = 5% - 10%

Neutron efficiencies (3x10 cm)

Veto neutron efficiencies (2 cm)

HADES RICH + target region

→ Neutron rescattering by RICH material (15% - 30% effect!)

Simulated neutron resolution

Rescattering of neutron in RICH backplane

→ much less tailing without RICH backplane !

Neutron efficiencies without RICH

Veto neutron efficiencies without RICH

Simulation To-Do list

- Finalize neutron detector geometry
- Update RICH geometry (backplane, full material budget)
- Implement proper digitizer and hit finder
- Implement full event reconstruction (neutron + ch. part.)
- Full simulation of SRC events
- Realistic background from p+A events (transport codes)
- Get a signal/background estimate

Neutron efficiencies obtained with tagged neutrons from the $\pi^- + p \rightarrow n \pi^- \pi^+$ exclusive reaction

August 2014 run: 0.69 GeV/c $\pi^- + CH_2$, $\approx 8.10^8$ evts ($\approx 1/3$ on H₂)

Neutron efficiencies of RPC & TOF

Comparison with full **KSU code** simulation:

Momentum dependence

Reminder: TOF has 2 & 3 cm rods (BC408)

KSU simul: Cecil et al. NIM 161 (1979)

Neutron efficiencies of RPC & TOF

Comparison with full **HGeant/GCalor** simulation:

Momentum dependence

Reminder: TOF has 2 & 3 cm rods (BC408)

Use exclusive $p + p \rightarrow p + n + \pi^+$ reaction to prepare tagged neutrons

Pluto simulation:

reaction kinematics does not provide backwards running neutrons, but pions might still be useful to probe material budget

Use exclusive $p + d \rightarrow p + p + n$ reaction on deuterated polyethylene

Pluto simulation:

reaction kinematics provides backwards running neutrons suitable for efficiency studies

Use exclusive $p + p \rightarrow p + p + \pi^0$ reaction to prepare photon source

→ Photons are emitted into full solid angle