SRC@HADES: Experimental Realization Georgios Laskaris – MIT

SRC@HADES Meeting, GSI, February 13th-14th, 2017.

Laboratory for Nuclear Science @

• SRC Kinematics 101

• Proposed experimental setup

Resolutions and observables

• Expected Rates for Phase I and II

Conclusions

• SRC Kinematics 101

• Proposed experimental setup

Resolutions and observables

• Expected Rates for Phase I and II

Conclusions

llii

- 1. Detection of two, high-momentum, leading protons in the beam direction. (HADES)
- 2. Detection of one (two), low-momentum, recoil nucleon in the backwards direction. (New recoil detector)

1. Raffle a nucleon from a correlated Fermi-Gas model.

- 1. Raffle a nucleon from a correlated Fermi-Gas model.
- 2. Boost to the nucleon rest frame and get the cross-section for (p,2p) elastic scattering in this frame.

- 1. Raffle a nucleon from a correlated Fermi-Gas model.
- 2. Boost to the nucleon rest frame and get the cross-section for (p,2p) elastic scattering in this frame.
- Boost to the c.m. and do the scattering for angles of 60° 120°. Keep only events with |s|,|t|,|u| ≥ 2 (GeV/c)².

- 1. Raffle a nucleon from a correlated Fermi-Gas model.
- 2. Boost to the nucleon rest frame and get the cross-section for (p,2p) elastic scattering in this frame.
- Boost to the c.m. and do the scattering for angles of 60° 120°. Keep only events with |s|,|t|,|u| ≥ 2 (GeV/c)².
- 4. Boost back to the lab frame and "smear" the protons according to the HADES resolution (extracted from the HADES GEANT3 simulation)

Kinematics for 3.5 GeV beam

Simulated Scattering off a SRC pair

$$\theta_{c.m.}^{pp} = 90^{\circ} \pm 10^{\circ}$$
$$\sigma_{c.m.}^{SRC} = 140 MeV / c$$
$$n(k)_{k>k_F} = 1/k^4$$

Simulated Scattering off a SRC pair

$$\theta_{c.m.}^{pp} = 90^{\circ} \pm 10^{\circ}$$
$$\sigma_{c.m.}^{SRC} = 140 MeV / c$$
$$n(k)_{k>k_F} = 1/k^4$$

Experimental requirements

- 1. Detection of two, high-momentum, leading protons in the beam direction. (HADES)
 - 2 protons have similar momenta. ($\sim 1.5 4.0 \text{ GeV/c}$)
 - 2 protons go into opposite sectors.
 - Angular range: 18° 45°.
- 2. Detection of one (two), low-momentum, recoil nucleon in the backwards direction. (New Recoil detector)
 - Recoil nucleon momentum ranges from 200 800 MeV/c.
 - No significant angular correlation with the 'leading' protons
 - Angular range: 100° 170°.

✓ SRC Kinematics 101

Proposed experimental setup

Resolutions and observables

• Expected Rates for Phase I and II

Conclusions

Шii

 $\Delta \Omega \approx 50\%$ Proton PID > 95% $18^{\circ} \le \theta_{1,2} \le 45^{\circ}$

 ΔΩ ≈ 20%
 σ_{TOF} ~ 400 ps

 Recoil
 E ≈ 30 - 50% (neutrons)
 ΔP/P(500 MeV/c) < 4%</th>

 Detector:
 110° ≤ θ_{recoil} ≤ 160°
 ΔP(500 MeV/c) ≈ 10 - 20 MeV/c

Mii

Central wall:

- 6 NeuLAND modules.
- Active volume: 250x250x60 cm³
- Composed of 250x5x5 cm³ bars readout using two 1" PMTs.

Two small side walls (for 3N-SRC search)

- 8 planes each.
- Active volume: 90x70x40 cm³
- Composed of 70x5x5 cm³ bars readout using two 2" PMTs.

+ support structure

NeuLAND Angular Coverage: 115° – 155°

Mii

✓ SRC Kinematics 101

✓ Proposed experimental setup

Resolutions and observables

• Expected Rates for Phase I and II

Conclusions

Proton Reconstruction Resolutions as extracted from full HADES GEANT3

4.4 4 4.2 4.0 3.5 (c) 3.8 (c) 3.6 (c) 3.4 (c) 3.4 (c) 3.2 3 2.5 3.0 2.8 2 2.6 24 θ (deg) 22 20 26 28 30 18

Resolution Map: $\Delta P/P$ (%)

Recoil Detector Resolutions

Observables: Missing Momentum

Observables: Missing Momentum

✓ SRC Kinematics 101

✓ Proposed experimental setup

✓ Resolutions and observables

Expected Rates for Phase I and II

Conclusions

SRC@HADES: Two Phases Approach

- Phase I @ 3.5 GeV:
 - Run in parallel to Di-lepton experiment using dedicated trigger
 - Recoil detector: NeuLAND only
 - Targets: ⁹³Nb, ¹²C, ⁴⁰Ca
 - RICH in place
 - Measure only A(p,2pn) and 3N-SRC: A(2pnn)
- Phase II @ 4.5 GeV:
 - Run a dedicated SRC experiment
 - Recoil detector: NeuLAND + side walls
 - Possible Targets: ¹²C, ²⁸Si, ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Fe, ⁹³Nb, ¹¹²Sn, ¹²⁴Sn, ²⁰⁸Pb
 - Remove RICH
 - Measure A(p,2pN) and A(p,2p2N)

- Run in parallel to Di-lepton (p+⁹³Nb) experiment @ 3.5 GeV
- Required trigger condition for Di-lepton experiment at HADES acceptance is multiplicity M ≥ 2
- At 1×10^7 p/s and 2% interaction probability \rightarrow
 - $M \ge 2$ trigger rate is 140 kHz (based on UrQMD)

 A x3 reduction in flux necessary to be within 50 kHz (maximum trigger rate of HADES)

- We propose:
 - keeping $7*10^6$ $1x10^7$ p/s with a x2 3 prescale on the M ≥ 2 trigger.
 - Add dedicated SRC trigger. No prescale. Up to 5 kHz.

Dedicated Trigger for SRC@ 3.5 GeV

Two options to have some 'A-dependence' study:

- Instead of 10 ⁹³Nb foils, use 8 ⁹³Nb foils, 1 ¹²C foil and 1 ⁴⁰Ca
- Change target array towards the end of the run to ¹²C + ⁴⁰Ca foils

Targets	Target Thickness (gr/cm²)	Interaction Probability (%)
¹² C	0.17	0.2
⁴⁰ Ca	0.25	0.2
⁹³ Nb	2.7	1.6

For Phase I:

- RICH in place
- use NeuLAND only

Parameters	Values
Target Thickness	10 ²⁴ protons/cm ²
Beam flux	7x10 ⁶ p/sec
Time	4 weeks
Duty cycle	100%
Target Transparency	0.35*0.35
Neutron Efficiency	0.4
Acceptance	0.3(2p) x 0.15(n)
Other things	0.1

For Phase I, the expected total number of events is:

- np-SRC via ⁹³Nb(p,2pn): 8,000 events.
- np-SRC via ¹²C (p,2pn) and ⁴⁰Ca(p,2pn): 1,000 events.

SRC@HADES: Two Phases Approach

- Phase I @ 3.5 GeV:
 - Run in parallel to Di-lepton experiment using dedicated trigger
 - Recoil detector: NeuLAND
 - Targets: ⁹³Nb, ¹²C, ⁴⁰Ca
 - RICH in place
 - Measure only A(p,2pn) and 3N-SRC: A(2pnn)
- Phase II @ 4.5 GeV:
 - Run a dedicated SRC experiment
 - Recoil detector: NeuLAND + side walls
 - Possible Targets: ¹²C, ²⁸Si, ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Fe, ⁹³Nb, ¹¹²Sn, ¹²⁴Sn, ²⁰⁸Pb
 - Remove RICH
 - Measure A(p,2pN) and A(p,2p2N)

- SRC run with dedicated trigger: M ≥ 2 && opp. sect. && TOF_{1,2} <13 ns
- Recoil detector: NeuLAND and small side walls
- For the measurement of recoil protons, RICH detector has to be removed
- Up to five different targets will be used including symmetric and asymmetric nuclei

For Phase II:

- Remove RICH
- NeuLAND+side walls

Possible Targets

Possible Targets	Target Thickness (gr/cm ²)
¹² C	1.7
²⁸ Si	2.2
⁴⁰ Ca	2.5
⁴⁸ Ca	2.7
⁵⁶ Fe	2.8
⁹³ Nb	3.3
¹¹² Sn	3.5
¹²⁴ Sn	3.7
²⁰⁸ Pb	4.4

Interaction probability 2%

Trigger Rates for ¹²C @ 4.5 GeV

Trigger Rates for ⁵⁶Fe @ 4.5 GeV

Parameters	Values
Target Thickness	10 ²⁴ protons/cm ²
Beam flux	6x10 ⁷ p/sec
Time	4 weeks
Duty cycle	50%
Target Transparency	0.35*0.35
Neutron Efficiency	0.4
Acceptance	0.75(2p) x 0.3(n)
Other things	0.1

Plii

Cuts and Rates @ 4.5 GeV

For Phase II, the expected total number of events per target (5 targets) is:

- np-SRC via. A(p,2pn): 10,000 events.
- pp-SRC via. A(p,2pp): 4,000 events.

✓ SRC Kinematics 101

✓ Proposed experimental setup

✓ Resolutions and observables

✓ Expected Rates for Phase I and II

Conclusions

- HADES combined with a new recoil detector can measure for first time thousands of 2N and 3N-SRC pairs
- NeuLAND ideal for being the main part of the new recoil detector
- Essential to execute the experiment in two phases:
 - Phase I: SRC experiment in parallel to Di-lepton program acquiring few thousands of events on 3 different targets measuring only neutrons
 - Phase II: Dedicated SRC experiment acquiring events on several targets measuring both recoil neutrons and protons

Thank You! 5-5 **Discussion...** SRC @

Our Goal: Identify quasi-elastic Nb(p,2p) events in the data and compare their rate to our simulation

Parameters	Values
Target Thickness	10 ²⁴ protons/cm ²
Beam flux	2x10 ⁶ p/sec
Time	4.66 hr
Duty cycle	0.83
DAQ Efficiency	0.7
Downscaling Factor	3
Target Transparency	0.35*0.35
Acceptance	0.5
Other things	0.5

Event Selection Cuts

Quantities	Cuts
θ _{cm}	60°<θ _{cm} <120°
θ_{lab} for P_1 and P_2	$18^{\circ} < \theta_{lab} < 85^{\circ}$
s,t,u	>2 GeV ²
ϕ_{lab} for P_1 and P_2	$170^{\circ} < \Delta \varphi_{lab} < 190^{\circ}$
Multiplicity	2 tracks required
Additional cuts	P _{miss} >0.50 GeV/c P _{miss} <1.0 GeV/c (E ₁ +E ₂)>3.2 GeV/c
(applied to both simulation and data)	

Hii

Verification of QE Correlations

14 (CeC) 12

۔ 10'

8

6

50

60

Events: Simulation/Data ~ 4

(depending on the exact value of the cuts used)

 $\theta_1 + \theta_2$ (deg)

80

90

HADES LVL1 trigger (based on RPC hits)

