Overview

- Shape (Phase) Transitions ...
- ... and Coexistence
- Spherical and Deformed Shape in Zr Isotopes
 - G.S. Collectivity in the transitional 98Zr
 - Experiment: GRETINA & CHICO2 @ ATLAS / CARIBU
 - New, more stringent Limits on B(E2)
Shape (Phase) Transitions

Shape Transition with Strong Mixing / Low Barrier

- Within one valence space
- X(5) / E(5) / CBS

F. Iachello, PRL 85/87 (2000/2001)
N. Pietralla, PRC 70 (2004)

Shape Transition with Weak Mixing / High Barrier

- Two valence spaces (normal + intruder)
- High-Barrier case

A. Leviathan, PRC 74 (2006)
Type II Shell Evolution

E(2⁺₁) Systematics at N=56-60

Weak coupling (p-n) was shown for Z~40, N<56 in prev. works

Assume it here -> E(2⁺₁) depends mainly on SPEs

![Graph showing systematics for E(2⁺₁) at N=56-60](image)

Ru: smooth drop

Mo: small peak at 56, moderate drop

Zr: clear peak at N=56,58 in Zr

Sr: „peak“ N=56, drop past 58

Kr: small peak at 56, smooth after

For Z>40 νg⁷/₂ fills and is lowered because of πg⁹/₂ -> gaps disappear
^{96}Zr – Type II Shell Evolution

Electron Scattering at the S-DALINAC

C. Kremer, PRL 117, 172503 (2016)
96Zr – Type II Shell Evolution

Electron Scattering at the S-DALINAC

C. Kremer, PRL 117, 172503 (2016)

Well-separated spherical and Deformed minima
=> weakly mixing structures
Shape Transition in Zr Isotopes

- Closed $d_{5/2}$-shell in 96Zr \rightarrow Spherical ground state
- Deformation in 100Zr \rightarrow Deformed ground state
Shape Transition in Zr Isotopes

- Closed $d_{5/2}$-shell in $^{96}\text{Zr} \rightarrow$ Spherical ground state
- Deformation in $^{100}\text{Zr} \rightarrow$ Deformed ground state

$R_{4/2} = \frac{E(4^+_1)}{E(2^-_1)}$

$\text{B(E2)} > 0.7 \text{ W. u.}$

(Betterman et al., 2010)
Coulex Experiment

Figure from www.phy.anl.gov
Coulex Experiment

- 252Cf fission source
- Gas catcher
- ECR charge breeder

GRETINA & CHICO2
($\varepsilon_\gamma = 6.5\%, \Delta E/E \sim 1\%, \Delta \theta \sim 1^\circ$)

Figures from www.phy.anl.gov
Kinematics Reconstruction

- CoulEx of P/T
- Detection of Ejectiles (P/T) with CHICO2
- Calculate γ-angle θ & velocity β
- Correct for Doppler-shift in energy:
 \[E' \approx E \left(1 + \beta \right) \cos(\theta) \]

→ use of CHICO2 for Doppler-correction & safe CoulEx
Spectra

Uncorrected Target-CoulEx

^{98}Mo $2^+_1 \rightarrow 0^+_\text{g.s.}$

Doppler-Correction for $A=98$

Beam dominated by ^{98}Mo
Analysis \rightarrow no 98Zr in-beam

- Beam composition analysis
- Calibration with standard sources
- Reaction partner selection
- Doppler-correction using CHICO2

$(\text{no})^{98}$Zr

$2^+_1 \rightarrow 0^+_{\text{g.s.}}$

1223 keV

98Mo

$3^-_1 \rightarrow 2^+_1$

1230 keV

98Zr $2^+_1 \rightarrow 0^+_{\text{g.s.}}$ – transition observed
Analysis → no 98Zr in-beam

- Beam composition analysis
- Calibration with standard sources
- Reaction partner selection
- Doppler-correction using CHICO2

But we know beam composition

98Zr $^{2+} \rightarrow ^{0+}_{\text{g.s.}}$
1223 keV

98Mo $^{3-} \rightarrow ^{2+}_{1}$
1230 keV

98Zr $^{2+} \rightarrow ^{0+}_{\text{g.s.}}$ – transition observed
New Stringent B(E2) Limits

- Stopped Beam Analysis →152(64) pps 98Zr in beam
- Transition would have been observed with >40 transition counts
- GOSIA: Expected ~460 counts with B(E2) = 10 W.u. and 2400 pps

98Mo only
- With 40 98Zr transitions: significant Count difference
- significant FWHM difference

B(E2) < 17 W.u.
98Zr Spherical

- $s_{1/2}$ likely low
- p-n interaction relatively weak
- Little n scattering from $s_{1/2} \rightarrow d_{3/2} / g_{7/2}$

98Zr is spherical, weakly collective
QPT to deformed occurs past 98Zr
(between $N=58$ and $N=60$)
Comparison to Shell Model

Summary

• Investigated shape transition in Zr
• Determined $17 \text{ W.u.} > B_{Zr-98}(E2; 2^+_1 \rightarrow 0^+_{\text{g.s.}}) > 0.7 \text{ W.u.}$
• Phase transition after $N=58$
• Good agreement with theory

• Precision & higher-lying transitions missing
to proof shape coexistence in ^{98}Zr
Thank you!

Collaboration:

W. Witt1, V. W.1, M. Albers2, A.D. Ayangeakaa2, B. Bucher4, M. Carpenter2, D. Cline3, H. David2, A. Hayes3, C. Hoffman2, R.V.F. Janssens2, B. Kay2, F. Kondev2, T. Lauritsen2, O. Möller1, N. Pietralla1, G. Rainovski5, G. Savard2, D. Seweryniak2, J. Smith2, R. Stegmann1, C.-Y. Wu4, S. Zhu2

1 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
2 Argonne National Lab., Argonne, IL 60439, USA
3 Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14642, USA
4 Lawrence Livermore National Lab., Livermore, CA 94550, USA
5 Atomic Physics Dpt., University of Sofia, 1164 Sofia, Bulgaria