Decay studies of exotic A~70 nuclei

Test of nuclear properties at both extremes of the nuclear chart

A.I. Morales

Instituto de Física Corpuscular (CSIC-Universitat de València) Università degli Studi di Milano INFN Sezione di Milano

NUSPIN Workshop, 26-29 June 2017, GSI (Darmstadt, Germany)

MOTIVATION: Exotic A~70 nuclei

> The most exotic A=70 nuclei could be produced and studied at the RIBF-RIKEN

▲								Rb 71	Rb 72	Rb 73	Rb 74 64.776 ms	Rb 75	Rb 76 36.5 x	Rb 77 3.78 m	Rb 78 17.66 m	Rb 79 22.9 m	Rb 80 33.4 s	Rb 81 4.572 h	Rb 82	Rb 83 86.2 d	Rb 84 32.82 d	Rb 85 72.17	Rb 86	Rb 87 27.03	Rb 88 17.773 m
	NP	111	2-F	RIB	F9 :	3 36	Kr 9 27.4 m	Kr 70 52 ms	Kr 71 100 ms	Kr 2 17. is	Kr 73 27.3 s	Kr 74 11.50 m	Kr 75 4.29 m	Kr 76 14.8 h	Kr 77 74.4 m	Kr 78 0.355	Kr 79 35.04 h	Kr 80 2.295	Kr 81 2.29 ky	Kr 82	Kr 83	Kr 84 56.987	Kr 85 10.776 y	Kr 86 17.279	Kr 87 76.3 m
						Br 67 7	Br 8 < 1.5 +05	Br 69 <24 m	Br 70 79.1 ms	Br 1 21 s	Br 72 78.6 s	Br 73 3.4 m	Br 74 25.4 m	Br 75 96.7 m	Br 76 16.2 h	Br 77 57.04 h	Br 78 6.45 m	Br 79 51.69	Br 90 17.68 m	Br 81 49.31	Br 82 35.282 h	Br 83 2.40 h	Br 84 31.76 m	Br 85 2.90 m	Br 86 55.1 s
			34	Se 64	Se 65 33 ms	Se 66 33 ms	Se 133 ms	35.5 1	27 A s	41.1 m	Se 71 4.74 m	Se 72 8.40 d	Se 73 7.15 h	Se 74 0.89	Se 75	Se 76 9.37	Se 77	Se 78	Se 79 335 ky	Se 80 49.61	Se 81 18.45 m	Se 82	Se 83 22.3 m	Se 84 3.26 m	Se 85 31.7 s
		As 61 7	As 62 7	As 63	As 64 40 ms	As 65 170 ms	As 66 95.77 ms	As 67 42.5 x	As 68 151.6 x	As 69 15.2 m	As 70 52.6 m	As 71 65.30 h	As 72 26.0 h	As 73	As 74	As 75 100.	As 76 1.0778 d	As 77 38.79 h	As 78 90.7 m	As 79 9.01 m	As 80 15.2 s	As 81	As 82	As 83	As 84 4.02 s
	32	Ge 60	Ge 61 44 ms	Ge 62 129 ms	Ge 63 142 ms	Ge 64 63.7 s	Ge 65 30.9 s	Ge 66 2.26 h	Ge 67 18.9 m	Ge 68 270.93 d	Ge 69 39.05 h	Ge 70 29.57	Ge 71	Ge 72 27.45	Ge 73 7.75	Ge 74 36.50	Ge 75 82.78 m	Ge 76	Ge 77	Ge 78 81.0 m	Ge 79 18.90 s	Ge 80 29.5 s	Ge 81	Ge 82 4.56 s	Ge 83
		Ga 59 <43 is-09	Ga 60 70 ms	Ga 61 160 ms	Ga 62	Ga 63	Ga 64 2.627 m	Ga 65 15.2 m	Ga 66 9.304 h	Ga 67 3.2617 d	Ga 68 67.71 m	Ga 69 60.100	Ga 70 21.14 m	Ga 71	Ga 72 14.10 h	Ga 73 4.85 h	Ga 74 8.12 m	Ga 75 126 s	Ga 76 32.6 s	Ga 77 13.2 s	Ga 78 5.09 s	Ga 79 2.047 s	Ga 80 2.03 s	Ga 81 1.217 s	Ga 82 599 ms
	30	Zn 58 96 ms	Zh 59	Zn 60 2.38 m	Zn 61 89.1 s	Zh 62 9.193 h	Zn 63 38.47 m	Zn 64 49.17	Zh 65 243.93 d	Zn 66 27.71	Zh 67	Zn 68 18.45	Zh 69 56.4 m	Zn 70	Zh 71 245 m	Zn 72 46.5 h	Zn 73 23.5 s	Zn 74 95.6 x	Zh 75 10.2 s	Zn 76 5.7 s	Zn 77 2.08 s	Zn 78 1.47 s	Zn 79 995 me	Zn 80 550 ms	Zn 81 304 ms
		Cu 57	Cu 58	Cu 59 81.5 s	Cu 60 23.7 m	Cu 61	Cu 62 9.67 m	Cu 63	Cu 64	Cu 65	Cu 66	Cu 67	Cu 68	Cu 69 2.85 m	Cu 70 44.5 s	Cu 71	Cu 72	Cu 73	Cu 74	Cu 75	Cu 76 637.7 ms	Cu 77 467.9 ms	Cu 78 335 ms	Cu 79 220 ms	Cu 80 210 ms
	28	NI 56	NI 57 35.60 h	NI 58	NI 59 101 ky	NI 60	NI 61	NI 62	NI 63	NI 64	NI 65 2.5175 h	NI 66 54.6 h	NI 67 21 s	NI 68 29 s	NI 69	NI 70	NI 71	NI 72	NI 73	N 74	NI 75	NI 76	NI 77	NI 78	NI 79
		Co 55	Co 56	Co 57	Co 58	Co 59	Co 60	Co 61	Co 62	Co 63	Co 64	Co 65	Co 66	Co 67	Co 68	Co (Co 70	Co 71	Co 72	Co 73	Co 74	Co 75	C 76	50	
	26	Fe 54	Fe 55	Fe 56	Fe 57	Fe 58	Fe 59	Fe 60	Fe 61	Fe 62	Fe 63	Fe 64	Fe 65	Fe 66	Fe 67	Fe (Fe 69	Fe 70	Fe 71 28 ms	Fe 72	Fe 73	Fe 74	Т		
		Mn 53	Mn 54	Mn 55	Mn 56	Mn 57	Mn 58	Mn 59	Mn 60	Mn 61	Mn 62	Mn 63	Mn 64	Mn 65	Mn 66	Mn (2	Mn 68	Mn 69	Mn 70	Mn 71		48			
	24	Cr 52	Cr 53	Cr 54	Cr 55	Cr 56	Cr 57	Cr 58	Cr 59	Cr 60	Cr 61	Cr 62	Cr 63	Cr 64	Cr 65	Cr d				10					
I		28	9.301	30	33997 M	32	211	34	State Mil	36	244 mit	38	Lovina	40	27.5 Mil	42		44		N	211	12	RI	BF	80

Ν

Ζ

MOTIVATION: Structure of exotic A~70 nuclei

MOTIVATION: Shell evolution in neutron-rich A~70, N>40 nuclei

MOTIVATION: Development of shape coexistence in ⁷⁰Ni

Monte Carlo shell-model (MCSM)

- Full pf-g9/2-d5/2 model space
- A3DA Hamiltonian

[Y. Tsunoda et al., PRC 89, 031301(R) (2014)]

Tensor-force component of protonneutron interactions plays a crucial role in the shape coexistence

MOTIVATION: Nature of the low-spin β -decaying isomer in Co

Coupling of the $f_{7/2}$ proton-hole to the $1/2^{-1}$ \succ K=3/2 β -decaying isomer in Ni \rightarrow (3⁺) K=5/2 proton E (MeV) -14 [W.F. Mueller et al., PRC (2000)] K=7/2 Coupling of deformed shells: (1+), (2+), (2-) \geq [Liddick etal., PRC (2012)] [F. Flavigny et al., PRC (2015)] 416(29) ms proto -18 ⁶⁷₂₆Fe₄₁ Q₈=9.4(5) MeV ¹6(5) 8(3) 8(3) K=1/2 13(4) 5.0(2) 2769.2 K=3/2 1.1(9) 3.3(14) **1368** 1178 13(4) 5.0(2) 2760.6 2734.8 24(6) 4.8(2) =5/2 neutron E (MeV) 3.7(14) 251.9 <=7/2 1859.1 <2 >6.0 K=9/2 -5 680.4 188.9 <u>ှုမှ 1251.9</u> နာ <u>>5.8</u> (5/2) <5 8(3) 100 53) 680.5 49(9) 5.0(3) (3/2) <24 >5.4 (1/2) 491.6 496(33) ms β 🖌 <20% -7 >5.4 (7/2) <28 329(28) ms ⁶⁷₂₇Co₄₀ I_{β} (%) log ft -8 neutron 041307-4 -9 [D. Pauwels et al., PRC (2008)] -0.2 -0.4

ß

6

MOTIVATION: Shell evolution in proton-rich A~70 nuclei

MOTIVATION: Superallowed $0^+ \rightarrow 0^+ \beta$ decay in ⁷⁰Br

THE BIGRIPS AND EURICA SETUPS

Radioactive Isotope Beam Factory (RIBF) @ RIKEN

β-decay ⁷⁰Fe \rightarrow ⁷⁰Co

11

> MCSM calculations: A3DA Hamiltonian & pf + $g_{9/2}$ + $d_{5/2}$ orbitals

	logft (MCSM)	logft (exp.)
1 + ₁	7.9	>5.4(3)
1+ ₂	5.02	>4.45(13)
1+ ₃	4.33	>4.95(15)

■ Log*ft*

- Abundance of population of two excited 1⁺ states
- Highly hindered β feeding to the deformed 1⁺ ground state

 \Rightarrow consistent with the observed decay pattern

β decay ⁷⁰Co (low spin) \rightarrow ⁷⁰Ni

- MCSM \Rightarrow Much higher population of 2⁺₂ than 2⁺₁
- Experiment \Rightarrow Slightly prefer to feed 2⁺₂ than 2⁺₁, but almost comparable

β decay ⁷⁰Br \rightarrow ⁷⁰Se

- Two long-lived β-decaying states $\Rightarrow T=1, J^{\pi} = 0^{+}$
 - > Superallowed β decay
 - Selective population of 1⁺ states
 - \Rightarrow T=0, J^{π} = 9⁺
 - Selective population of deformed structures

1000

TIME (msec)

T=1, $J^{\pi} = 0^+$									
Ref	t _{1/2} (ms)	Ref	t _{1/2} (ms)						
[AI78]	$\textbf{80,2}\pm\textbf{0.8}$	[Bur88]	78.54 ± 0.59						
[Lop02]	79 ± 36	[Rog14]	70 ± 19						
T=0, $J^{\pi} = 9^+$									
Ref	t1/2 (ms)	Ref	t1/2 (ms)						
[Vos 78]	2200 ± 200	[Sch02]	2200 ± 300						

[AI78] D.E. Alburger, PRC (1978) [Bur88] R.H. Burch, PRC (1988) [Lop02] M.J. López Jiménez, PRC (2002) [Rog14] A.M. Rogers, PRC (2014) [Vos81] B. Vosicki, PRC (1981) [Sch02] K. Schmidt, PRC (2002)

$$\beta$$
 decay ⁷⁰Br (T=0, J ^{π} = 9⁺) \rightarrow ⁷⁰Se

$$\beta$$
 decay ⁷⁰Br (T=0, J ^{π} = 9⁺) \rightarrow ⁷⁰Se

- T=0, J^π = 9⁺ state in
 ⁷⁰Br is predicted to be
 prolate deformed by
 both calculations
- Yrast 8⁺ state also predicted to be *prolate* deformed by both calculations
- Logft to the yrast 8+ states (logft~4.6) consistent with the observed logft=4.40(4) to the (8⁺₂) level

 β decay ⁷⁰Br (T=0, J^{π} = 9⁺) \rightarrow ⁷⁰Se

J. Ljungvall, PRL (2008)

Selective population of shapes in A=70 isobars

$$\beta$$
 decay ⁷⁰Br (T=1, J ^{π} = 0⁺) \rightarrow ⁷⁰Se

$$\beta$$
 decay ⁷⁰Br (T=1, J ^{π} = 0⁺) \rightarrow ⁷⁰Se

$$\beta$$
 decay ⁷⁰Br (T=1, J ^{π} = 0⁺) \rightarrow ⁷⁰Se

- The β decay of exotic A=70 nuclei has been exploited by the EURICA collaboration at RIBF (RIKEN) to investigate the nuclear properties of nuclei at both extremes of the chart of nuclides.
- On the neutron-rich side, evidence for the stabilization of prolate deformed structures in the ground states of ⁷⁰Mn, ⁷⁰Fe, and ⁷⁰Co has been found. Shape coexistence in ⁷⁰Co and ⁷⁰Ni has been described in terms of "**Type II**" shell evolution, howing an excellent agreement between experimental results and theoretical predictions.
- On the proton-rich side, shape coexistence and mixing result in a complex interpretation of the low-energy spectrum of ⁷⁰Se.
- For the superallowed decay of ⁷⁰Br, the improved half-life measurement and the first estimate of the BR obtained here reveal the need for a new high-precision measurement of the Q_{EC} for this decay. This is particularly relevant to probe the theoretical isospin-symmetry-breaking corrections which are enhanced for N=Z nuclei with large Z.

Type II shell evolution in A = 70 isobars from the $N \ge 40$ island of inversion

A.I. Morales ^{a,b,*}, G. Benzoni ^a, H. Watanabe ^{c,d}, Y. Tsunoda ^e, T. Otsuka ^{f,g,h}, S. Nishimura ^d, F. Browne ^{i,d}, R. Daido ^j, P. Doornenbal ^d, Y. Fang ^j, G. Lorusso ^d, Z. Patel ^{k,d}, S. Rice ^{k,d}, L. Sinclair ^{1,d}, P.-A. Söderström ^d, T. Sumikama ^m, J. Wu ^d, Z.Y. Xu ^{f,d}, A. Yagi ^j, R. Yokoyama ^f, H. Baba ^d, R. Avigo ^{a,b}, F.L. Bello Garrote ⁿ, N. Blasi ^a, A. Bracco ^{a,b}, F. Camera ^{a,b}, S. Ceruti ^{a,b}, F.C.L. Crespi ^{a,b}, G. de Angelis ^o, M.-C. Delattre ^p, Zs. Dombradi ^q, A. Gottardo ^o, T. Isobe ^d, I. Kojouharov ^r, N. Kurz ^r, I. Kuti ^q, K. Matsui ^f, B. Melon ^s, D. Mengoni ^{t,u}, T. Miyazaki ^f, V. Modamio-Hoybjor ^o, S. Momiyama ^f, D.R. Napoli ^o, M. Niikura ^f, R. Orlandi ^{h,v}, H. Sakurai ^{d,f}, E. Sahin ⁿ, D. Sohler ^q, H. Schaffner ^r, R. Taniuchi ^f, J. Taprogge ^{w,x}, Zs. Vajta ^q, J.J. Valiente-Dobón ^o, O. Wieland ^a, M. Yalcinkaya ^y

Decay properties of 68,69,70 Mn: Probing collectivity up to N = 44 in Fe isotopic chain

G. Benzoni^{a,*}, A.I. Morales^{a,b}, H. Watanabe^{c,d}, S. Nishimura^c, L. Coraggio^e, N. Itaco^{e,f},

- A. Gargano^e, F. Browne^{g,c}, R. Daido^h, P. Doornenbal^c, Y. Fang^h, G. Lorusso^c, Z. Patel^{i,c},
- S. Rice^{i, c}, L. Sinclair^{j, c}, P.-A. Söderström^c, T. Sumikama^k, J. Wu^c, Z.Y. Xu^{l, c},
- R. Yokoyama^m, H. Baba^c, R. Avigo^{a,b}, F.L. Bello Garroteⁿ, N. Blasi^a, A. Bracco^{a,b},
- F. Camera^{a,b}, S. Ceruti^{a,b}, F.C.L. Crespi^{a,b}, G. de Angelis^o, M.-C. Delattre^p, Zs. Dombradi^q,
- A. Gottardo^o, T. Isobe^c, I. Kuti^q, K. Matsui¹, B. Melon^r, D. Mengoni^{s,t}, T. Miyazaki¹,
- V. Modamio-Hoybjor^o, S. Momiyama¹, D.R. Napoli^o, M. Niikura¹, R. Orlandi^{u,v},
- H. Sakurai^{c,1}, E. Sahinⁿ, D. Sohler^q, R. Taniuchi¹, J. Taprogge^{w,x}, Zs. Vajta^q,
- J.J. Valiente-Dobón^o, O. Wieland^a, M. Yalcinkaya^y

[Phys. Lett. B, 765 (2017) 328]

[Phys. Lett. B, 751 (2015) 107]

PHYSICAL REVIEW C 00, 004300 (2017)

Simultaneous investigation of the $T = 1(J^{\pi} = 0^+)$ and $T = 0(J^{\pi} = 9^+) \beta$ decays in ⁷⁰Br

A. I. Morales,^{1,2,3,*} A. Algora,^{1,4,†} B. Rubio,¹ K. Kaneko,⁵ S. Nishimura,⁶ P. Aguilera,⁷ S. E. A. Orrigo,¹ F. Molina,⁷ G. de Angelis,⁸ F. Recchia,^{9,10} G. Kiss,⁶ V. H. Phong,^{6,11} J. Wu,⁶ D. Nishimura,¹² H. Oikawa,¹³ T. Goigoux,¹⁴ J. Giovinazzo,¹⁴ P. Ascher,¹⁴ J. Agramunt,¹ D. S. Ahn,⁶ H. Baba,⁶ B. Blank,¹⁴ C. Borcea,¹⁵ A. Boso,^{9,10} P. Davies,¹⁶ F. Diel,¹⁷ Zs. Dombrádi,⁴ P. Doornenbal,⁶ J. Eberth,¹⁷ G. de France,¹⁸ Y. Fujita,¹⁹ N. Fukuda,⁶ E. Ganioglu,²⁰ W. Gelletly,^{1,21} M. Gerbaux,¹⁴ S. Grévy,¹⁴ V. Guadilla,¹ N. Inabe,⁶ T. Isobe,⁶ W. Korten,²² T. Kubo,⁶ S. Kubono,⁶ T. Kurtukián Nieto,¹⁴ S. Lenzi,^{9,10} D. Lubos,²³ C. Magron,¹⁴ A. Montaner-Pizá,¹ D. R. Napoli,^{8,9} H. Sakurai,^{6,24} Y. Shimizu,⁶ C. Sidong,⁶ P.-A. Söderström,⁶ T. Sumikama,²⁴ H. Suzuki,⁶ H. Takeda,⁶ Y. Takei,¹³ M. Tanaka,¹⁹ and S. Yagi¹³

Special mention to:

NP1112-RIBF80: G. Benzoni, H. Watanabe

L. Coraggio, N. Itaco, A. Gargano (⁶⁸⁻⁷⁰Mn→⁶⁸⁻⁷⁰Fe)

T. Otsuka, Y. Tsunoda (⁷⁰Fe \rightarrow ⁷⁰Co \rightarrow ⁷⁰Ni)

NP112-RIBF93: A. Algora, B. Rubio
 K. Kaneko (⁷⁰Br→⁷⁰Se)

THANK YOU VERY MUCH FOR YOUR ATTENTION

DAQ for decay spectroscopy experiments

β decay of neutron-rich A=70 isobars

- Two long-lived β-decaying states at high and low spins in ⁷⁰Co
- Low-spin β-decaying state in ⁷⁰Co isolated via the β decay of ⁷⁰Fe
- Selectively populate low-spin states in ⁷⁰Ni

> 3 progenitors: ⁷⁰Co, ⁷⁰Fe, ⁷¹Co

⁷⁰Fe

 β decay ⁷⁰Fe \rightarrow ⁷⁰Co

MCSM wave functions of the three 1⁺ states in ⁷⁰Co

> $1_{1,2}^+$: almost identical, involving multiplep-h excitations across the Z = 28 and N = 40 gaps (**Type-II shell evolution**) \Rightarrow Largely prolate deformed shape

Gamow-Teller

34

β-decay ⁷⁰Fe \rightarrow ⁷⁰Co

Despite very similar occupancies, there is a discrepancy in B(GT) (logft) between the 1_1^+ and 1_2^+ states

- Difference in the Gamow-Teller matrix elements M(GT)
 - > 1_{1}^{+} : the main (positive) $vp_{1/2} \rightarrow \pi p_{1/2}$ component almost canceled out by the other components
 - > 1_{2}^{+} : contribution of the $vp_{1/2} \rightarrow \pi p_{3/2}$ transition remains predominant