Bayes-Tracking A novel Approach to Gamma-Ray Tracking

P. Napiralla, H. Egger, P. John, N. Pietralla, M. Reese, C. Stahl

Progress of AGATA

Figure: AGATA at LNL (15 crystals) (D. Ceccato. Agata demonstrator. http://agata.lnl.infn.it/lnaugurazione/foto/official/ content/AD_7_large.html)

Figure: AGATA at GANIL (now 35 crystals) (Photo by E. Clément. https://www.agata.org/sites/ default/files/_STR7915.jpg)

Major Gamma-Ray Tracking Algorithms

Major Tracking algorithms

	Forward Tracking	Back-Tracking
Starting point	First interaction in cluster	Assumed photo-absorption
E_{γ} identification	$\sum E_{\sf dep}$ in cluster	$\sum \textit{E}_{\sf dep}$ in cluster

Problem: Compton-Escaped photons "useless" for energy reconstruction

⇒ New algorithm: *Bayes-Tracking*

Bayes' Theorem

Let A and B be two events.

Bayes' Theorem

Let A and B be two events.

Bayes-Tracking Bayes' Theorem

 $P(B \cap A^c) = P(B^c \cap A)$

 $P(B \cap A)$

Let *A* and *B* be two events.

 $P(\mathbf{B}^{c} \cap \mathbf{A}^{c})$

Bayes' Theorem

Let A and B be two events.

Bayes' Theorem

Let *A* and *B* be two events. Conditional probability of *B*, given *A* is true:

$$P\left(\frac{B|A}{P}\right) = \frac{P\left(A \cap B\right)}{P\left(A\right)}, \qquad P\left(A \cap B\right) = P\left(B \cap A\right)$$

Bayes' Theorem

Let A and B be two events. Conditional probability of B, given A is true:

$$P\left(B|A\right) = rac{P(A \cap B)}{P(A)}, \qquad P(A \cap B) = P(B \cap A)$$

From this Bayes' theorem follows

$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$$

Bayes' Theorem

Let A and B be two events. Conditional probability of B, given A is true:

$$P\left(B|A\right) = rac{P(A \cap B)}{P(A)}, \qquad P(A \cap B) = P(B \cap A)$$

From this Bayes' theorem follows

$$P(hypothesis|data) = \frac{P(data|hypothesis) \cdot P(hypothesis)}{P(data)}$$

Bayes' Theorem

	data	hypothesis
data		
hypo- thesis	<u>Posterior</u> P (hypothesis data) Probability of hypothesis, given data is true	

Bayes' Theorem

	data	hypothesis
data	<u>Evidence</u> P (data) Knowledge about data	
hypo- thesisPosterior P (hypothesis data) Probability of hypothesis, 		

Bayes' Theorem

	data	hypothesis
data	<u>Evidence</u> P (data) Knowledge about data	
hypo- thesis	<u>Posterior</u> P (hypothesis data) Probability of hypothesis, given data is true	<u>Prior</u> P (hypothesis) Knowledge about hypothesis

Bayes' Theorem

	data	hypothesis
data	<u>Evidence</u> P (data) Knowledge about data	Likelihood Fct. <i>P</i> (<i>data</i> <i>hypothesis</i>) Plausibility of <i>data</i> , given <i>hypothesis</i> is true
hypo- thesisPosterior P (hypothesis data)Probability of hypothesis, given data is true		<u>Prior</u> P (hypothesis) Knowledge about hypothesis

Requirements on *Bayes-Tracking*

- Goal: Identify incident photon energy E_γ
- **Data**: Deposited energies $\{E_{dep_1}, \dots, E_{dep_N}\}$ at interaction points $\{\vec{x}_1, \dots, \vec{x}_N\}$

 $\Rightarrow \text{Using Bayes' theorem, calculate } P\left(\frac{e_0}{\{E_{dep_1}, \vec{x}_1\}, \dots, \{E_{dep_N}, \vec{x}_N\}}\right)$

$$\Rightarrow \textit{P}\left(\textit{e}_{0}|...,\{\textit{E}_{dep_{i}},\vec{x}_{i}\},...\right) \propto \textit{P}\left(...,\{\textit{E}_{dep_{i}},\vec{x}_{i}\},...|\textit{e}_{0}\right)$$

e0: hypothetical incident photon energies

- Compton-scattering for i = 1, ..., N 1
- Mean-Free-Path λ
- Last interaction: Comptonor Photoelectric effect
- Measurement uncertainties

- Compton-scattering for i = 1, ..., N 1
- Mean-Free-Path λ
- Last interaction: Comptonor Photoelectric effect
- Measurement uncertainties

- Compton-scattering for i = 1, ..., N 1
- Mean-Free-Path λ
- Last interaction: Comptonor Photoelectric effect
- Measurement uncertainties

- Compton-scattering for i = 1, ..., N 1
- Mean-Free-Path λ
- Last interaction: Comptonor Photoelectric effect
- Measurement uncertainties

- Compton-scattering for i = 1, ..., N 1
- Mean-Free-Path λ
- Last interaction: Comptonor Photoelectric effect
- Measurement uncertainties

TECHNISCHE UNIVERSITÄT DARMSTADT

29.06.2017 | NuSpln 2017 @ GSI | Technische Universität Darmstadt | Institut für Kernphysik/AG Numerik und wissenschaftliches Rechnen | 8

^{29.06.2017 |} NuSpln 2017 @ GSI | Technische Universität Darmstadt | Institut für Kernphysik/AG Numerik und wissenschaftliches Rechnen | 8

^{29.06.2017 |} NuSpln 2017 @ GSI | Technische Universität Darmstadt | Institut für Kernphysik/AG Numerik und wissenschaftliches Rechnen | 8

29.06.2017 | NuSpln 2017 @ GSI | Technische Universität Darmstadt | Institut für Kernphysik/AG Numerik und wissenschaftliches Rechnen | 8

Spectrum of 60 Co, N = 3

29.06.2017 | NuSpIn 2017 @ GSI | Technische Universität Darmstadt | Institut für Kernphysik/AG Numerik und wissenschaftliches Rechnen | 8

Conclusion & Outlook

Conclusion:

- Bayes-Tracking as new Tracking algorithm
- Energy reconstruction using Compton-Escape-Events (FWHM \approx 6 keV) Outlook:

Conclusion & Outlook

Conclusion:

- Bayes-Tracking as new Tracking algorithm
- ► Energy reconstruction using Compton-Escape-Events (FWHM ≈ 6 keV)

Outlook:

- Implementation of Clustering algorithm
- Higher reconstruction/tracking efficiency
- Pair production and photon polarization
- Embed Bayes-Tracking into Femul

Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies $E_{\gamma} = 0.25 \text{ MeV}$ (a) and 0.5 MeV (b) with N = 2.

Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies $E_{\gamma} = 0.75 \text{ MeV}$ (a) and 1.0 MeV (b) with N = 3.

Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies $E_{\gamma} = 1.25 \text{ MeV}$ (a) and 1.75 MeV (b) with N = 3.

Compton-Events for $E_{\gamma} = 2.0$ MeV, N = 3 10^{-15} $\sum E_{dep} = 1.855 \text{ MeV},$ $\theta = (102.5^\circ, 91.5^\circ)$ 10^{-17} $\sum E_{dep} = 1.439$ MeV, 10^{-19} $\theta = (55.1^{\circ}, 77.2^{\circ})$ 10^{-21} Likelihood function 10^{-23} 10^{-25} 10^{-27} 10^{-29} 10^{-31} 10^{-33} 10^{-35} 10^{-3} e₀ in MeV

Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies $E_{\gamma} = 2.0 \text{ MeV}$ with N = 3.

Figure: Comparison of photons with three and four interactions inside the detector that either deposited their whole energy (a), or 1.16 MeV (b).

Figure: Comparison of photons that deposited 1.3 MeV inside the detector in three and four interactions (a). In addition, the influence of a smaller amount of interactions is shown in (b) for $E_{\gamma} = 0.25$ MeV and $\sum E_{dep} = 0.147$ MeV for three and two interactions.

(a) E_{μ} = (0.25 ± 0.005) MeV, N_P/N_C = 1

(b) $E_{\mu} = (0.5 \pm 0.005) \text{ MeV}, N_P/N_C = 0.96$

Figure: Energy reconstruction for N = 3 with $E_{\gamma} = 0.25$ MeV and 0.5 MeV compared to the respective total deposited energy.

Additional plots TECHNISCHE DΑ 10 Reconstructed energies Reconstructed energies Total deposited energies Total deposited energies 10^{2} 200 Total Counts 10 e₀ in MeV 1.5 e₀ in MeV

(a) E_{μ} = (0.75 ± 0.005) MeV, N_P/N_C = 0.6

(b) $E_{\mu} = (1.0 \pm 0.005) \text{ MeV}, N_P/N_C = 0.44$

Figure: Energy reconstruction for N = 3 with $E_{\gamma} = 0.75$ MeV and 1.0 MeV compared to the respective total deposited energy.

Additional plots TECHNISCHE 10 Reconstructed energies Reconstructed energies Total deposited energies Total deposited energies 10^{2} 200 Total Counts 10 10 1.5 e₀ in MeV e₀ in MeV

(a) $E_{\mu} = (1.25 \pm 0.005) \text{ MeV}, N_P/N_C = 0.34$

(b) $E_{\mu} = (1.75 \pm 0.01) \text{ MeV}, N_P/N_C = 0.22$

Figure: Energy reconstruction for N = 3 and $E_{\gamma} = 1.25$ MeV and 1.75 MeV compared to the respective total deposited energy.

Figure: Energy reconstruction for N = 3 with $E_{\gamma} = (2.0 \pm 0.01)$ MeV ($N_P/N_C = 0.21$) compared to the respective total deposited energy.

Figure: Histogram of $\ln(||(p_n)_n||_{\ell^2}^2)$ for the general ingoing directions of the background photons (front, side, back of detector) (a) and $\ln(||(p_n)_n||_{\ell^2}^2)$ depending on the exact angle between the source photon direction and the background photon direction α (b).

Figure: Histogram for background photons that yielded a likelihood function of zero depending on their angle of incidence α .

29.06.2017 | NuSpln 2017 @ GSI | Technische Universität Darmstadt | Institut für Kernphysik/AG Numerik und wissenschaftliches Rechnen | 22

Figure: Influence of the total deposited energy $\sum E_{dep}$ on the reconstructed energy E_{BT} .

Compton-Event for $E_{\gamma} = 0.25$ MeV and $\sum E_{dep} = 0.123$ MeV, $\theta = 118.1^{\circ}$, N = 2

Figure: Influence of the interaction point measurement uncertainty σ_x on the likelihood function.

29.06.2017 | NuSpln 2017 @ GSI | Technische Universität Darmstadt | Institut für Kernphysik/AG Numerik und wissenschaftliches Rechnen | 24