Shell model calculations for exotic nuclei with realistic potentials: reliability and predictiveness

Luigi Coraggio

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

NUSPIN 2017 June 28th, 2017 - GSI, Darmstadt

Luigi Coraggio NUSPIN 2017 Workshop

- A. Covello (UNINA and INFN)
- A. Gargano (INFN)
- N. Itaco (UNINA2 and INFN)
- T. T. S. Kuo (SUNY at Stony Brook, USA)
- L. C. (INFN)

Part I

The theoretical framework

Luigi Coraggio NUSPIN 2017 Workshop

What is a realistic effective shell-model hamiltonian ?

An example: ¹⁹F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches • phenomenological • microscopic V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow H_{eff}

Definition

The eigenvalues of $H_{\rm eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- 2 Determine the model space better tailored to study the system under investigation
- Oerive the effective shell-model hamiltonian by way of the many-body theory
- Calculate the physical observables (energies, e.m. transition probabilities, ...)

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

- Brueckner G matrix
- EFT inspired approaches

Strong short-range repulsion

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$
 - SRG
 - chiral potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$
 - SRG
 - chiral potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - V_{low-k}
 SRG
 - ohiral patr
 - chiral potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$
 - SRG
 - chiral potentials

The shell-model effective hamiltonian

A-nucleon system Schrödinger equation

 $|H|\Psi_{
u}
angle=E_{
u}|\Psi_{
u}
angle$

with

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$

Model space

$$|\Phi_i\rangle = [a_1^{\dagger}a_2^{\dagger} \dots a_n^{\dagger}]_i |c\rangle \Rightarrow P = \sum_{i=1}^d |\Phi_i\rangle\langle\Phi_i|$$

Model-space eigenvalue problem

$$H_{\rm eff} P |\Psi_{\alpha}\rangle = E_{\alpha} P |\Psi_{\alpha}\rangle$$

The shell-model effective hamiltonian

$$\begin{pmatrix} PHP & PHQ \\ \hline \\ QHP & QHQ \end{pmatrix} \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ Q\mathcal{H}P = 0 \end{array} \begin{pmatrix} P\mathcal{H}P & P\mathcal{H}Q \\ \hline \\ 0 & Q\mathcal{H}Q \end{pmatrix}$$

 $H_{\rm eff} = P \mathcal{H} P$

Suzuki & Lee $\Rightarrow X = e^{\omega}$ with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

The shell-model effective hamiltonian

Folded-diagram expansion

 \hat{Q} -box vertex function

$$\hat{Q}(\epsilon) = PH_1P + PH_1Qrac{1}{\epsilon - QHQ}QH_1P$$

 \Rightarrow Recursive equation for $H_{\rm eff} \Rightarrow$ iterative techniques (Krenciglowa-Kuo, Lee-Suzuki, ...)

$${\cal H}_{
m eff} = \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} + \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} \int \hat{Q} \int \hat{Q} \cdots,$$

The perturbative approach to the shell-model H^{eff}

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

The \hat{Q} -box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the \hat{Q} -box

Luigi Coraggio NUSPIN 2017 Workshop

The shell-model effective operators

Consistently, any shell-model effective operator may be calculated

It has been demonstrated that, for any bare operator Θ , a non-Hermitian effective operator Θ_{eff} can be written in the following form:

$$\Theta_{\rm eff} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots) ,$$

where

$$\hat{Q}_m = rac{1}{m!} rac{d^m \hat{Q}(\epsilon)}{d\epsilon^m} \Big|_{\epsilon=\epsilon_0} \; ,$$

 ϵ_0 being the model-space eigenvalue of the unperturbed hamiltonian H_0

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

The shell-model effective operators

. . .

The χ_n operators are defined as follows:

$$\begin{split} \chi_{0} &= (\hat{\Theta}_{0} + h.c.) + \Theta_{00} , \\ \chi_{1} &= (\hat{\Theta}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{01}\hat{Q} + h.c.) , \\ \chi_{2} &= (\hat{\Theta}_{1}\hat{Q}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{2}\hat{Q}\hat{Q} + h.c.) + \\ (\hat{\Theta}_{02}\hat{Q}\hat{Q} + h.c.) + \hat{Q}\hat{\Theta}_{11}\hat{Q} , \end{split}$$

and

$$\hat{\Theta}(\epsilon) = P\Theta P + P\Theta Q \frac{1}{\epsilon - QHQ} QH_1 P ,$$

$$\hat{\Theta}(\epsilon_1; \epsilon_2) = P\Theta P + PH_1 Q \frac{1}{\epsilon_1 - QHQ} \times Q\Theta Q \frac{1}{\epsilon_2 - QHQ} QH_1 P ,$$

$$\hat{\Theta}_m = \frac{1}{m!} \frac{d^m \hat{\Theta}(\epsilon)}{d\epsilon^m} \Big|_{\epsilon = \epsilon_0} , \quad \hat{\Theta}_{nm} = \frac{1}{n!m!} \frac{d^n}{d\epsilon_1^n} \frac{d^m}{d\epsilon_2^m} \hat{\Theta}(\epsilon_1; \epsilon_2) \Big|_{\epsilon_1 = \epsilon_0, \epsilon_2 = \epsilon_0} \quad \text{if is the set of a set of$$

The shell-model effective operators

We arrest the χ series at χ_0 , and expand it perturbatively:

Our recipe for realistic shell model

• Input V_{NN} : V_{low-k} derived from the high-precision NN CD-Bonn potential with a cutoff: $\Lambda = 2.6 \text{ fm}^{-1}$.

- *H*_{eff} obtained calculating the *Q*-box up to the 3rd order in perturbation theory.
- Effective operators are consistently derived by way of the the MBPT

Part II

Reliability

Luigi Coraggio NUSPIN 2017 Workshop

Large-scale realistic shell-model calculations

Neutron-rich isotopic chains

Approaching neutron drip line:

Shell-model study of the onset of collectivity at N = 40

L.C., A. Covello, A. Gargano, and N. Itaco, Phys. Rev. C 89, 024319 (2014)

Proton-rich isotopic chains

Approaching proton drip line:

Enhanced quadrupole collectivity of neutron-deficient tin isotopes

L.C., A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Phys. Rev. C **91**, 041301 (2015)

Collectivity at N = 40

 \Rightarrow shell-model study of neutron-rich isotopic chains outside ⁴⁸Ca \Rightarrow Collective behavior framed within the quasi-SU(3) approximate symmetry

 \Rightarrow Two model spaces with ⁴⁸Ca inert core, including or not the neutron $1d_{5/2}$ orbital

The collectivity at N = 40

PHYSICAL REVIEW C 81, 051304(R) (2010)

Collectivity at N = 40 in neutron-rich ⁶⁴Cr

A. Gade, "R. V.F. Janssen," J. Bangher, "J. D. Bang," B. A. Brows, "J. M. Pequence," C. J. Charg, "A. N. Docons," J. S. Perrem, G. Storger, C. R. Morris, "B. P. Kay, "F. G. Konder, "L. Lamitens," B. Mohand, "J. K. Mohand, "A. N. Docons," J. P. Kay, "R. C. Konder, "L. Lamitens," B. Mohand, "D. K. Mohand, "E. K. Mohand, "D. K. Mandad, "Manghand, "D. K. K. Mohand, "D. K. Mandad, "D. K. K

"Be-indeed inclusic scattering of $^{42.44}$ Fe and $^{40.24}$ Cr was performed at intermediate beam energies. Excited states in 46 Cr were measured for the first time. Energies and population patterns of excited states in these neutron-ick Fe and Cr ancle in compared and interpreted in the framework of targs-scale skell-andel calculations in different model spaces. Evidence for increased collectivity and for distinct structural changes between the neighboring Fear ACT (storage chains near $^{-1}$ and to p strements).

PHYSICAL REVIEW C 81, 061301(R) (2010)

Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?

J. J. Japael, "A. Gauga, A. Oscadi, W. Wann, P. Chann, Y. G. Marna, Y. Japael, A. Bangal, Z. Markan, Y. Lawar, K. Sangal, Y. Lawar, Y

The lifetime of the first costs 2⁻¹ stars in ¹⁰Fa and ¹⁰Fa have been meansule for the first interardig the nuclei drames (Dopfer drift module all resultations) means the means in the interaction is a interaction. In the interaction is a interaction of the interaction. The interaction means are used on the interaction is the interaction in the inte

PHYSICAL REVIEW C 88, 024326 (2013)

Collectivity of neutron-rich Ti isotopes

H. Sandi, "S. And, "F. Eakons, "A. F. Maraka," S. Soh, "H. Back, "K. Barky, "L. Barky

The ensure of the average of the matrixes 12 max investigated to prove indexis average in average of the 24 MeV/related $N_{\rm F}$ material phi denois (in μ mays (the fractionity ν rays, there matches with the scapped or (1004) (11 MeV (1004)) and (1002) (12 MeV are indexisted). The adjust suggests are straightforware indexisted in the adjust suggest and the scale of the straightforware indexisted in t

PHYSICAL REVIEW C 82, 054301 (2010)

Island of inversion around 64Cr

S. M. Leasti, F. Nowacki, ² A. Poves,³ and K. Sieja^{5,4} ¹Dipariments di Fuis and Thimerinia and MFW, Segime di Panhora, 1-53131 Padowa, Indy ¹PIPC, ICMF-KMSE to Lineraria di Samburge, F-5703 Samburg, France ²Diparimento de Fritera Toriera et FF-UMICSE, Universidad Automas de Madrid, E-2009 Madrid, Spain (Receival O Sementre 2000; mblinded 2 November 2010)

We say the development of calculation prior the startme each make in some M = 40, where the experiment of the brochest calculates are prior plot plot appearing prior the plot calculates of the startment of the startment of the startment of the startment of the plot calculates of the startment startment of the startment of th

Collectivity at N = 40

INFN Infinite Nacional diffusion Nacional

Luigi Coraggio

NUSPIN 2017 Workshop

Enhanced quadrupole collectivity in light tin isotopes

 \Rightarrow shell-model study of neutron-deficient tin isotopes using $^{88}\mathrm{Sr}$ as a core

 \Rightarrow Quadrupole collectivity enhanced by the Z = 50 cross-shell excitations

 \Rightarrow Model space spanned by proton $1p_{1/2}, 0g_{9/2}, 0g_{7/2}, 1d_{5/2}$ and $0g_{7/2}, 1d_{5/2}$ orbitals

 \Rightarrow <u>Theoretical</u> single-particle energies, two-body matrix elements and effective charges have been employed

Calculation of the effective charges

Proton effective charges

n _a l _a j _a n _b l _b j _b	$\langle a e_{ ho} b angle$
0 <i>g</i> _{9/2} 0 <i>g</i> _{9/2}	1.62
$0g_{9/2} 0g_{7/2}$	1.67
0g _{9/2} 1d _{5/2}	1.60
$0g_{7/2} 0g_{7/2}$	1.73
0g _{7/2} 1d _{5/2}	1.74
0g _{7/2} 1d _{3/2}	1.76
$1d_{5/2} \ 1d_{5/2}$	1.73
$1d_{5/2} \ 1d_{3/2}$	1.72
$1d_{5/2} 2s_{1/2}$	1.76
$1d_{3/2} \ 1d_{3/2}$	1.74
$1d_{3/2} 2s_{1/2}$	1.76
$0h_{11/2} 0h_{11/2}$	1.72

Neutron effective charge	s	
n _a laja n _b l _{bjb}	$\langle a e_n b\rangle$	
$0g_{7/2} 0g_{7/2}$	0.94	
$0g_{7/2} \ 1d_{5/2}$	0.96	
$0g_{7/2} \ 1d_{3/2}$	0.95	
$1d_{5/2} 1d_{5/2}$	0.94	
$1d_{5/2} 1d_{3/2}$	0.97	
$1d_{5/2} 2s_{1/2}$	0.79	
$1d_{3/2} 1d_{3/2}$	0.96	
$1d_{3/2} 2s_{1/2}$	0.79	
$0h_{11/2} 0h_{11/2}$	0.87	

Enhanced quadrupole collectivity in light tin isotopes

Part III

Predictiveness

Luigi Coraggio NUSPIN 2017 Workshop

Nuclear models and predictive power

RIBs & advances in detection techniques \Rightarrow unknown structure of nuclei towards the drip lines

Luigi Coraggio NUSPIN 2017 Workshop

realistic shell-model calculations in different mass regions $$\Downarrow$$ results in good agreement with experimental data

Can realistic shell-model calculations be predictive ? few selected examples

Few selected physics cases

- Sn isotopes beyond N = 82
- heavy calcium isotopes
- neutron-rich titanium and nickel isotopes

Single-particle energies from the experiment \Rightarrow reduced role of 3N force

 10th International Spring Seminar on Nuclear Physics: New Quests in Nuclear Structure
 IOP Publishing

 Journal of Physics: Conference Series 267 (2011) 012019
 doi:10.1088/1742-6596/267/1/012019

Shell-model study of exotic Sn isotopes with a realistic effective interaction

A Covello^{1,2}, L Coraggio², A Gargano² and N Itaco^{1,2} ¹Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy ²Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

- \Rightarrow shell-model study of Sn isotopes beyond N = 82
- \Rightarrow V_{low-k} from CD-Bonn *NN* potential
- $\Rightarrow h_{9/2} fpi_{13/2}$ model space with ¹³²Sn inert core
- \Rightarrow SP energies from ¹³³Sn

 10th International Spring Seminar on Nuclear Physics: New Quests in Nuclear Structure
 IOP Publishing

 Journal of Physics: Conference Series 267 (2011) 012019
 doi:10.1088/1742-6596/267/1/012019

Shell-model study of exotic Sn isotopes with a realistic effective interaction

A Covello^{1,2}, L Coraggio², A Gargano² and N Itaco^{1,2} ¹Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy ²Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

\Rightarrow shell-model study of Sn isotopes beyond N = 82

... It is the aim of our study to compare the results of our calculations with the available experimental data and to make predictions for the neighboring heavier isotopes ...

Excitation energies of the 2_1^+ , 4_1^+ , and 6_1^+ states in Sn isotopes

Excitation energies of the 2_1^+ , 4_1^+ , and 6_1^+ states in Sn isotopes

Yrast 6⁺ Seniority Isomers of ^{136,138}Sn

G, S. Simpson,^{1,2,3} G. Gey,^{3,4,5} A. Jungclaus,⁶ J. Taprogge,^{6,7,5} S. Nishimura,⁵ K. Sieja,⁸ P. Doornenbal,⁵ G. Lorusso,⁵ P.-A. Söderström,⁵ T. Sumikama,⁹ Z. Y. Xu,¹⁰ H. Baba,⁵ F. Browne,^{11,5} N. Fukuda,⁵ N. Inabe,⁵ T. Isobe,⁵ H. S. Jung,^{12,*} D. Kameda,⁵ G. D. Kim,¹³ Y.-K. Kim,^{13,14} I. Kojouharov,¹⁵ T. Kubo,⁵ N. Kurz,¹⁵ Y. K. Kwon,¹³ Z. Li,¹⁶ H. Sakurai,⁵¹⁰

Heavy calcium isotopes

LETTER

doi:10.1038/nature12226

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalka⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea³, J. Menéndez^{6,2}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{5,4}, J. Simonli^{5,7}, J. Stanja⁵⁰, R. N. Wolf⁸ K. Zuber¹⁰

⇒ first mass measurements of 53 Ca and 54 Ca ⇒ new method of precision mass spectroscopy with ISOLTRAP

Heavy calcium isotopes

Heavy calcium isotopes

LETTER

doi:10.1038/nature12522

Evidence for a new nuclear 'magic number' from the level structure of 54 Ca

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee⁴, K. Matsu², S. Michimara⁵, T. Ohtobayash², D. Nishimura⁶, T. Ohtsuka^{3,3}, H. Sakura^{6,3}, Y. Shiga¹, P. -A. Söderström², T. Sumikam^{3,4}, H. Suzuki², R. Tainchi⁴, Y. Usuro, J. J. Valience Dobon⁵ & K. Yoneda²

\Rightarrow spectroscopic study of ⁵⁴Ca

⇒ proton knockout reactions involving ⁵⁵Sc and ⁵⁶Ti projectiles

Luigi Coraggio NUSPIN 2017 Workshop

PHYSICAL REVIEW C 80, 044311 (2009)

Spectroscopic study of neutron-rich calcium isotopes with a realistic shell-model interaction

L. Coraggio,¹ A. Covello,^{1,2} A. Gargano,¹ and N. Itaco^{1,2}

¹Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy ²Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy (Received 30 July 2009; published 12 October 2009)

⇒ shell-model study of neutron-rich calcium isotopes

- \Rightarrow *fp* model space with ⁴⁰Ca inert core
- \Rightarrow predictions for the (at that time) unknown spectra of $^{53-56}$ Ca

Heavy calcium isotopes: shell-model results

Heavy calcium isotopes: shell-model results

different monopole properties

Isotopic chains "north-east" of ⁴⁸Ca

PHYSICAL REVIEW C 89, 024319 (2014)

Realistic shell-model calculations for isotopic chains "north-east" of ⁴⁸Ca in the (N,Z) plane

L. Coraggio,¹ A. Covello,² A. Gargano,¹ and N. Itaco^{1,2}

¹ Jistinto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Va Cintia - I-80126 Napoli, Italy ²Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy (Received 16 October 2013; revised manuscript received 9 December 2013; published 26 February 2014)

We perform realistic shell-model calculations for nuclei with valence nucleons outside ⁴⁴Ca, employing two different model spaces. The matrix elements of the effective two-body interaction and electromagnetic multipole operators have been calculated within the framework of many-body perturbation theory, starting from a low-momentum potential derived from the high-precision CD-Bonn free nucleon-nucleon starting. In provide the provide the test of the starting the starting of the starting test of the starting test of the starting of the starting test of test of the starting test of test of

DOI: 10.1103/PhysRevC.89.024319

PACS number(s): 21.60.Cs, 23.20.Lv, 27.40.+z, 27.50.+e

 \Rightarrow shell-model study of neutron-rich isotopic chains outside ⁴⁸Ca

 \Rightarrow fpgd model space with ⁴⁸Ca inert core

 \Rightarrow predictions for the (at that time) unknown spectra exotic Ti isotopes and of ⁷⁸Ni shell closure

Isotopic chains "north-east" of ⁴⁸Ca: shell-model results

Titanium isotopes

Nickel isotopes

Isotopic chains "north-east" of ⁴⁸Ca: shell-model results

Titanium isotopes

Nickel isotopes

Conclusions and outlook

- The agreement of our results with the experimental data testifies the reliability of a microscopic shell-model calculation with realistic potentials.
- We have now evidence of the predictive power of realistic shell model
- Role of real three-body forces and three-body correlations should be investigated.
- Perspectives: benchmark calculations with other many-body approaches.

These terms introduce density dependence into the effective shell-model hamiltonian

Conclusions and outlook

- The agreement of our results with the experimental data testifies the reliability of a microscopic shell-model calculation with realistic potentials.
- We have now evidence of the predictive power of realistic shell model
- Role of real three-body forces and three-body correlations should be investigated.
- Perspectives: benchmark calculations with other many-body approaches.

