

FIPPS FIssion Product Prompt γ-ray Spectrometer a new instrument of ILL for the spectroscopy of neutron-rich nuclei

A. Blanc¹, A. Chebboubi^{1,2}, H. Faust¹, E. Froidefond²,
M. Jentschel¹, G. Kessedjian², U. Köster¹, C. Michelagnoli¹,
P. Mutti¹, E. Ruiz-Martinez¹, G. Simpson²

¹Institut Laue-Langevin ²LPSC-Grenoble

NUSPIN 2017

26-29 June 2017

The Institut Laue-Langevin (ILL) - since 1971

- 58 MW high flux reactor with intense extracted neutron beams
- 12 member states (F, D, UK, E, CH, A, I, CZ, S, B, SK, DK)
- > 40 instruments (mainly for neutron scattering)
- user facility (2000 scientific visitors from 45 countries per year)

Outline

- Introduction:
 - spectroscopy after slow neutron-induced reactions
 - Nuclear Physics at the Institut Laue-Langevin
 - why FIPPS (EXogam at ILL (EXILL) campaign)

- The FIPPS instrument:
 - instrument layout
 - news from the first experimental campaign
 - future perspectives, physics possibilities

$\gamma\mathrm{-ray}$ spectroscopy after slow neutron-induced reactions

- \rightarrow close to stability
- \rightarrow structure at low spin (below n-separation energy)
- \rightarrow cross-sections (applicatio

$\gamma-{\rm ray}$ spectroscopy after slow neutron-induced reactions

Nuclear Physics @ ILL

LOHENGRIN fission fragment separator

P. Armbruster et al., NIM 139, 213–222 (1976)
 G. Fioni et al., NIMA 332, 175–180 (1993)

up to 10^5 s^{-1} mass-separeted fission fragments, $T_{1/2} >= \mu \text{s}$

GAMma-ray Spectrometer (GAMS)

E. Kessler Jr et al., NIMA 457, 187–202 (2001) C. Doll et al., J. Res. Natl. Inst. Stand. Technol. 105, 167 (2000)

EXogam @ ILL (EXILL)

- $\label{eq:Highly collimated neutron beam} \begin{array}{l} \label{eq:Highly collimated neutron beam} \\ \text{from ILL reactor (PF1B guide)} \end{array}$
- $\label{eq:high-efficiency} \begin{array}{l} \rightarrow \mbox{ High efficiency and resolution Ge array} \\ (\mbox{up to 52 Ge crystals, 6\% @1.3MeV}) \\ + \mbox{ LaBr}_3 \mbox{ detectors for fast timing} \end{array}$
- \rightarrow Fully digital electronics, trigger-less (>10 kHz/crystal)
- \rightarrow 2 reactor cycles (\approx 100 days)
- \rightarrow 14 stable (rare) and 3 actinide targets

The EXILL campaign: (n,γ) reactions on (rare) stable targets

The EXILL campaign: (n,fission) reactions on actinides

 235 UO₂, $\sigma_f = 586$ b Layer sandwiched between Zr or Be backings

²⁴¹PuO₂, $\sigma_f = 1010 \text{ b}$ Layer sandwiched between Be backings

Single-particle vs. collective phenomena around ¹³²Sn: delayed γ -ray spectroscopy of n-induced fission fragments

Milan-Cracow

collaboration

G. Bocchi et al., PLB 760, 273-278 (2016)

 \rightarrow New event-builder for cross-isomer coincidences

- \checkmark Prompt-delayed γ coincidences across the isomer
- \checkmark Lifetimes from LaBr₃ data (FATIMA campaign)
- ✓ New microscopic approach to particle-core couplings

The new ILL instrument FIPPS (phase I)

- \checkmark intense thermal neutron pencil beam
- \checkmark stable, radioactive and actinide targets
- ✓ γ -ray detection:
 - \rightarrow high-resolution HPGe clovers
 - \rightarrow symmetry around target position
 - \rightarrow digital electronics, list-mode data

\checkmark ancillary detectors

The new ILL instrument FIPPS (phase I)

- \checkmark intense thermal neutron pencil beam
- \checkmark stable, radioactive and actinide targets
- $\checkmark \gamma {\rm ray}$ detection:
 - \rightarrow high-resolution HPGe clovers
 - \rightarrow symmetry around target position
 - \rightarrow digital electronics, list-mode data

\checkmark ancillary detectors

The neutron beam

- \checkmark thermal neutron guide (H22)
- \checkmark n flux [n/cm^2/s]: 7×10^8 prior collimation \rightarrow 1×10^8 at target pos.
- \checkmark external γ -ray background 5 to 10 times better than at PF1b (EXILL)

The HPGe detector system. FIPPS efficiency

- ✓ 8 HPGe clovers (4×50×80)
- $\checkmark\,$ target-to-clover distance = 9 cm
- $\checkmark\,$ FWHM @ 1.3 MeV (^60Co) $\approx 2\,\text{keV}$
- ✓ digital electronics (100 MHz, CAEN V1724) → high count-rate

Add-Back factor: 1.11 (2) @ 340 keV 1.27 (3) @ 1.4 MeV 1.55 (6) @ 6.8 MeV

FIPPS performance: spectra quality

Main background sources: n capture on B (will be improved in next campaign) Compton (no shields)

FIPPS performance: angular correlations

use individual crystals in order to increase the number of angular combinations

FIPPS first experimental campaign (Dec. 2016, Jan.-March 2017)

6 experiments, \approx 30 users, 11 universities and labs (EU, US, CAN) γ -ray spectroscopy after (n, γ) reactions on stable isotopes (15 targets):

exp. 17-3-8, N. Cieplicka et al.

exp. 17-3-8, N. Cieplicka et al.

exp. 17-3-8, N. Cieplicka et al.

 205 Tl(n, γ) 206 Tl – angular correlations of γ rays

Multipolarity of the 5854-keV γ ray (theoretical values for different spin hipothesis): E1 0+ \rightarrow 1- \Rightarrow A2 = 0.5, A4 = 0.0 E1 1+ \rightarrow 1- \Rightarrow A2 = 0.25, A4 = 0.0

Sub-picosecond lifetime measurements at FIPPS

exp. 17-3-7, F.C.L. Crespi, M. Jentschel et al.

Shape coexistence and nature of low-ying states in mid-shell Cd-Te isotopes

Strong similarity in structure of Cd and Te nuclei – properties of 0_2^+ states in Te match intruder 0^+ states in Cd

exp. 17-3-3, P. Garret et al.

Shape coexistence and nature of low-ying states in mid-shell Cd-Te isotopes

Requirement: seek missing low-energy transitions amongst states to aid in identifying intruder band – use the ¹²³Te(n,γ) reaction

exp. 17-3-3, P. Garret et al.

FIPPS: short-term plans

- Last proposal round: 14 proposals, 300 days (cf. 90 days to be scheduled Oct-Dec 2017/beginning 2018)
- Oct. 2017-Dec. 2017: (n,γ) on (rare) stable targets, test of (n,fission) on ^{233,235}U with active targets

Possibilities:

- installation of additional Ge detectors (up to 16 clovers)
 + anti-Compton shields
- progressive installation of ancillary methods (LaBr₃, magnetic moment measurements, X-ray detectors...)
- (n,fission) with ²³³U, ²³⁵U, ²³⁹Pu, ²⁴¹Pu etc. targets
- test and use of fission tags (active targets, diamond detectors, ...)
- gaseous targets, radioactive targets and actinides (with fission veto)

FIPPS: work in progress

FIPPS: longer-term plans

Study the structure of n-rich nuclei and fission mechanism HPGe clovers + Gas-Filled-Magnet (GFM) for fission fragment selection

FIPPS phase II project submitted for Endurance II

 $\Delta A/A = 2.2\%$

acceptance: 0.4% extracted beam; full reconstruction of ion tracks using a low-pressure TPC $\rightarrow 3.5\%$

superconducting magnet designed by E. Froidefond (LPSC Grenoble)

Evolution of B with mass for 7.2 mbar of N.

A. Chebboubi PhD Thesis

G. Kessedjian et al.

Concluding remarks

- Nuclear studies after slow-neutron induced reactions @ ILL: Lohengrin, GAMS, EXILL campaign \rightarrow structure of nuclei close to stability and n-rich nuclei produced in fission (¹³³Sb)
- FIPPS is the new Nuclear Physics instrument of ILL for prompt gamma-ray spectroscopy after slow-neutron induced reactions
- promising results are coming from the first experimental campaign $((n,\gamma)$ on stable targets -²⁰⁶Tl,¹²⁴Te)
- rich experimental program for coming years ((n, γ) on radioactive targets, fission, ancillary devices, GFM...

it depends strongly on your input!)

