# The Shape-Transitional <sup>98</sup>Zr: Measurement of the B(E2) value with GRETINA/CHICO2



TECHNISCHE UNIVERSITÄT DARMSTADT

### <u>Volker Werner</u> alias Waldemar Witt

#### Institut für Kernphysik, TU Darmstadt AG Pietralla

Volker Werner | NUSPIN 2017 | GSI, 27.06.2017

#### **Overview**



- Shape (Phase) Transitions ...
- ... and Coexistence
- Spherical and Deformed Shape in Zr Isotopes
  - G.S. Collectivity in the transitional <sup>98</sup>Zr
  - Experiment: GRETINA & CHICO2 @ ATLAS / CARIBU
  - New, more stringent Limits on B(E2)

# Shape (Phase) Transitions

 $\beta_0$ 

 $\bigcap$ 

ß





# **Type II Shell Evolution**





Togashi et al., Phys. Rev. Lett. 117, 172502 (2016)



<sup>96</sup>Zr – Type II Shell Evolution





# **Electron Scattering at the S-DALINAC**

C. Kremer, PRL 117, 172503 (2016)

<sup>96</sup>Zr – Type II Shell Evolution







### **Shape Transition in Zr Isotopes**



- Closed  $d_{5/2}$ -shell in  ${}^{96}Zr \rightarrow$  Spherical ground state
- Deformation in  ${}^{100}$ Zr  $\rightarrow$  Deformed ground state

### **Shape Transition in Zr Isotopes**



TECHNISCHE

UNIVERSITÄT DARMSTADT

- Closed  $d_{5/2}$ -shell in  ${}^{96}$ Zr  $\rightarrow$  Spherical ground state
- Deformation in  ${}^{100}$ Zr  $\rightarrow$  Deformed ground state

#### **Coulex Experiment**





Volker Werner | TU Darmstadt | AG Pietralla | NUSPIN 2017 | GSI, 27.07.2017 | 98Zr B(E2), GRETINA/CHICO2 10

### **Coulex Experiment**

ECR II Ion Sour



- <sup>252</sup>Cf fission source • Gas catcher • ECR charge breeder • **ATLAS** Fragment Mass Analyzer Target Area IV Gammasnhe HELIOS **Δθ ~ 1°**) In-flight **RIB Gas Cell** Gretina/Gammaspher Beamline Hot Lab CARIBU Split-Pole Snectrometer Physics Target Area III ATLAS Lina Large Scattering Facility Trap Area **General Purpose Beam Line** Accelerator Control Room Figures from www.phy.anl.gov Approximate Sca (in feet)
  - GRETINA & CHICO2 ( $\epsilon_{\gamma}$  = 6.5%,  $\Delta$ E/E ~ 1%,  $\Delta$  $\theta$  ~ 1°)

RP08130

#### **Kinematics Reconstruction**





- CoulEx of P/T
- Detection of Ejectiles (P/T) with CHICO2
- Calculate γ-angle θ
   & velocity β
- Correct for Dopplershift in energy:
   E' ≈ E (1 + β) cos (θ)

→ use of CHICO2 for Doppler-correction & safe CoulEx

## Spectra





# Analysis → no <sup>98</sup>Zr in-beam



- Beam composition analysis
- Calibration with standard sources
- Reaction partner selection
- Doppler-correction using CHICO2



# Analysis → no <sup>98</sup>Zr in-beam





# **New Stringent B(E2) Limits**



- Transition would have been observed with >40 transtition counts
- GOSIA: Expected ~460 counts with B(E2) = 10 W.u. and 2400 pps



TECHNISCHE

UNIVERSITÄT DARMSTADT

## 98Zr Spherical





- s<sub>1/2</sub> likely low
- p-n interaction relatively weak
- Little n scattering from  $s_{_{1/2}} \rightarrow d_{_{3/2}}\,/\,g_{_{7/2}}$

#### <sup>98</sup>Zr is spherical, weakly collective QPT to deformed occurs past <sup>98</sup>Zr (between N=58 and N=60)



### **Comparison to Shell Model**



B(E2; 2<sup>+</sup> -> 0<sup>+</sup>) systematics



Volker Werner | TU Darmstadt | AG Pietralla | NUSPIN 2017 | GSI, 27.07.2017 | 98Zr B(E2), GRETINA/CHICO2 18

# Summary



- Investigated shape transition in Zr
- Determined 17 W.u. > B<sub>Zr-98</sub>(E2; 2<sup>+</sup><sub>1</sub>->0<sup>+</sup><sub>g.s.</sub>) > 0.7 W.u.
- Phase transition after N=58
- Good agreement with theory

 Precision & higher-lying transitions missing to proof shape coexistence in <sup>98</sup>Zr

Thank you !



#### **Collaboration:**

W. Witt<sup>1</sup>, V. W.<sup>1</sup>, M. Albers<sup>2</sup>, A.D. Ayangeakaa<sup>2</sup>, B. Bucher<sup>4</sup>,
M. Carpenter<sup>2</sup>, D. Cline<sup>3</sup>, H. David<sup>2</sup>, A. Hayes<sup>3</sup>, C. Hoffman<sup>2</sup>,
R.V.F. Janssens<sup>2</sup>, B. Kay<sup>2</sup>, F. Kondev<sup>2</sup>, T. Lauritsen<sup>2</sup>, O. Möller<sup>1</sup>,
N. Pietralla<sup>1</sup>, G. Rainovski<sup>5</sup>, G. Savard<sup>2</sup>, D.Seweryniak<sup>2</sup>, J. Smith<sup>2</sup>,
R. Stegmann<sup>1</sup>, C.-Y. Wu<sup>4</sup>, S. Zhu<sup>2</sup>

<sup>1</sup> Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
 <sup>2</sup> Argonne National Lab., Argonne, IL 60439, USA
 <sup>3</sup> Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14642, USA
 <sup>4</sup> Lawrence Livermore National Lab., Livermore, CA 94550, USA
 <sup>5</sup> Atomic Physics Dpt., University of Sofia, 1164 Sofia, Bulgaria



Federal Ministry of Education and Research

