NuSpIn NUSPIN 2017

26-29 June 2017 GSI

Europe/Berlin timezone

Investigation of internal background of ⁷Li and ⁶Li enriched CLYC scintillators

Agnese Giaz Università di Padova e INFN di Padova

Outline

- ✓ Scintillators detectors for nuclear physics
- ✓ Elpasolite crystals Why they are so interesting?
- ✓ Neutron detection capability
- ✓ Internal background in different CLYC scintillators and in a CLLB(C) samples
- ✓ Internal background can affect nuclear physics experiment?
- ✓ Conclusions

Scintillators for nuclear physics experiments

Detector requirements:

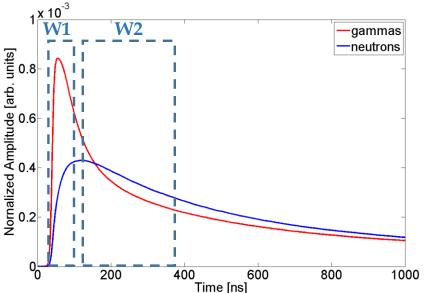
- ✓ Measurement of high energy gamma rays (~ 15 MeV) → Good efficiency
- ✓ Good Time resolution
- ✓ Imaging properties to reduce Doppler Broadening
- ✓ Energy resolution is not mandatory but very useful for:
 - calibration
 - measurement and studies of discrete structures
- ✓ Possibility to discriminate between gamma rays and neutrons using TOF and PSD.

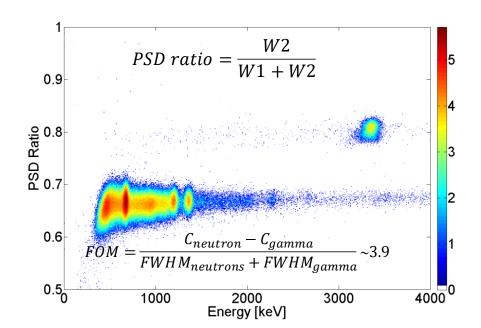
Scintillators are the best candidates for this kind of experiments

Material	Light Yield [ph/MeV]	Emission λ _{max} [nm]	En. Res. at 662 keV [%]	Density [g/cm ²]	Principal decay time [ns]
NaI:Tl	38000	415	6-7	3.7	230
CsI:Tl	52000	540	6-7	4.5	1000
LaBr ₃ :Ce	63000	360	3	5.1	17
CLLB:Ce	60000	410	2.9	4.2	55, ~ 270
CLYC:Ce	20000	390	4	3.3	1 CVL 50, ~1000

Elpasolite scintillators

The elpasolite crystals were developed approximately 10 years ago.


Excellent performances in terms of gamma and neutron detection.


Examples: CLLB:Ce (Cs₂LiLaBr₆:Ce), CLLC:Ce (Cs₂LiLaCl₆:Ce) and CLYC:Ce (Cs₂LiYCl₆:Ce)

Characteristics:

- ✓ High energy and time resolution
- Neutron-gamma pulse shape discrimination capability
- ✓ High proportionality
- ✓ High efficiency for gamma and neutrons
- ✓ High light yield
- ✓ Low cost

PSD is based on the difference in the scintillation decay response to gamma and neutrons.

Neutron detection

Fast neutrons:

- ✓ $^{35}Cl(n,p)^{35}S \rightarrow Q$ -value = 0.6 MeV $\sigma \approx 0.2$ barns at $E_n = 3$ MeV
- ✓ $^{35}Cl(n,\alpha)^{32}P \rightarrow Q$ -value = 0.9 MeV $\sigma \approx 0.01$ barns at $E_n = 3$ MeV

 $E_{p/\alpha} = (E_n + Q) q_{p/\alpha} \rightarrow p$ or α energy is linearly related to n energy \rightarrow CLYC is a neutron spectrometer

 $E_n > 6$ MeV other reaction channels on detectors isotopes \rightarrow not easy neutron spectroscopy

The kinetic energy of the neutrons can be measured via:

- 1) Time of Flight (TOF) techniques.
- 2) The energy signal

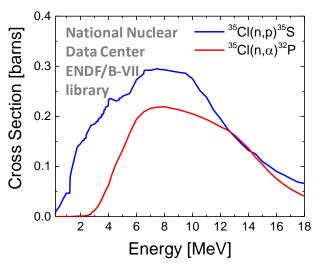
Thermal neutrons:

✓ 6 Li(n, α)t → Q-value = 4.78 MeV σ = 940 barns at E_n = 0.025 eV.

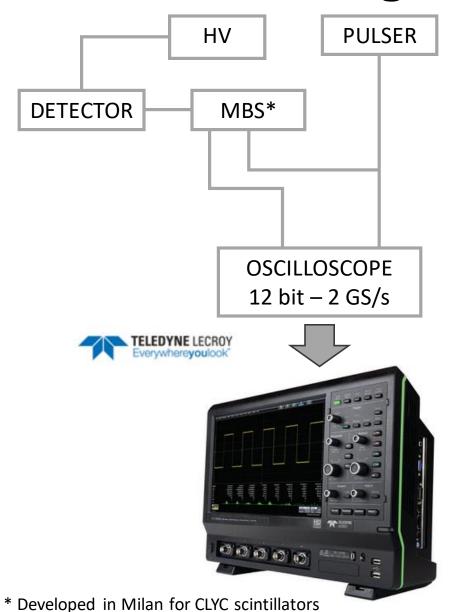
To fast thermal detection:

 6 Li (6 Li = 95%) enriched CLYC → CLYC-6

1 CLYC-6 1" x 1" 1 CLLB(C) 1" x 1"


To fast neutron detection:

 7 Li (7 Li > 99%) enriched CLYC→ CLYC-7

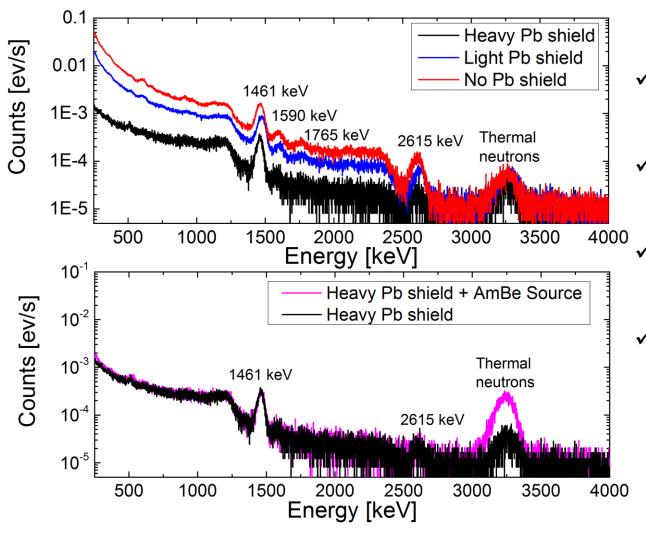

1 CLYC-7 1" x 1" 1 CLYC-7 2" x 2"

1 CLYC-7 2" x 2"

Internal background measurements

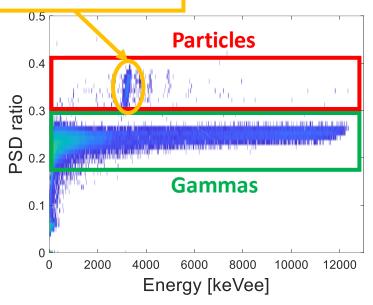
The detectors were placed inside a lead shield. The shield was changed from 5 cm up to 10 cm.

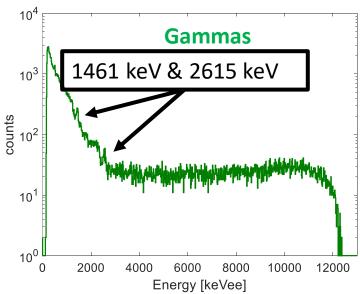
Calibration run with sources (137Cs and 60Co)

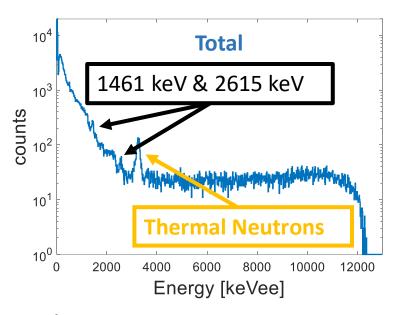

Data with and without shield were compared.

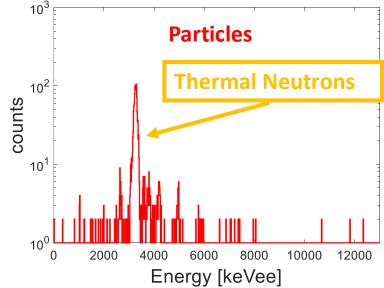
The measurements runs for few days.

Internal Radiation

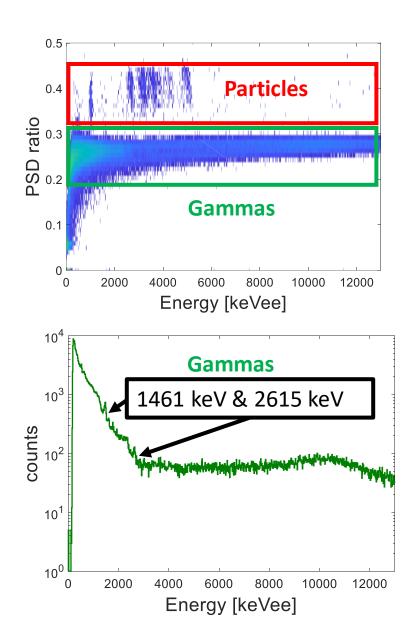

Measurements performed in Milan using a 95% enriched ⁶Li 1"x1" CLYC:Ce scintillator

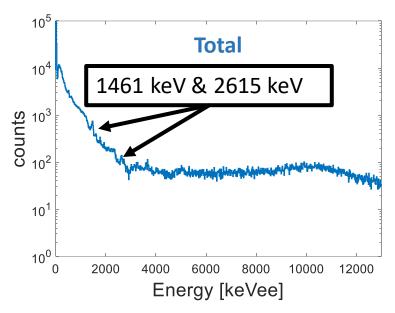


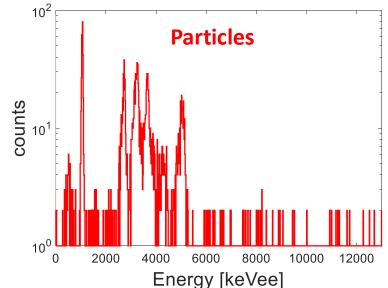

- ✓ The internal radiation is practically absent in CLYC:Ce.
- ✓ Internal radiation is not affected by any kind of shield.
- ✓ The internal radiation is weaker that 0.02 events/cm³
- ✓ Thermal Neutrons are weakly affected by the Pb shield

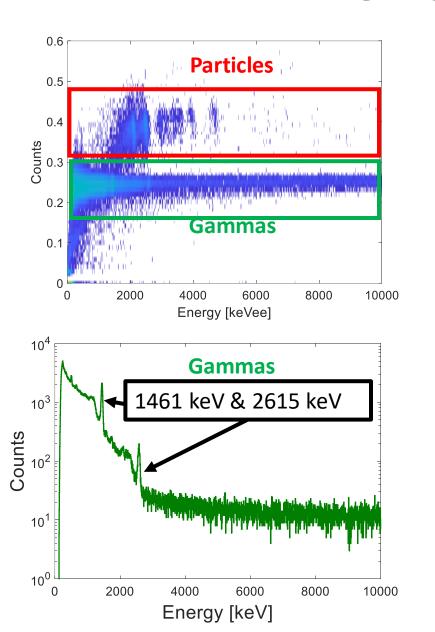

1" x 1" CLYC-6 scintillator

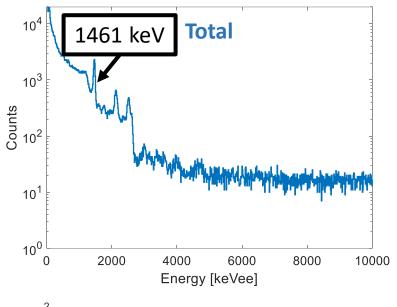
Thermal Neutrons

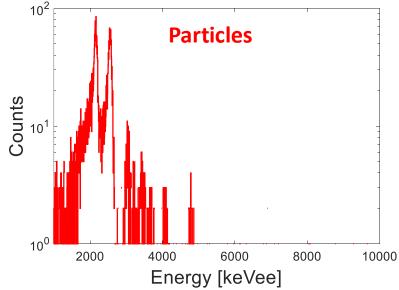




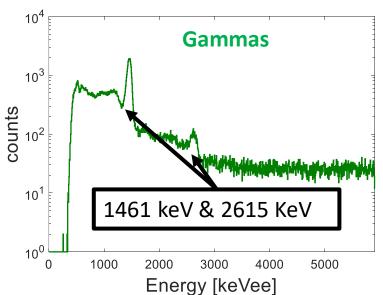


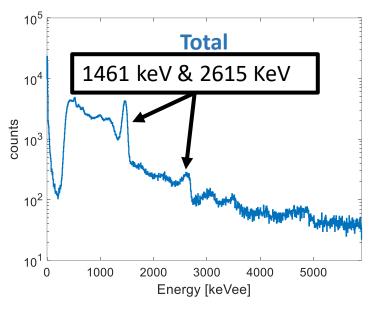

1" x 1" CLYC-7 scintillator

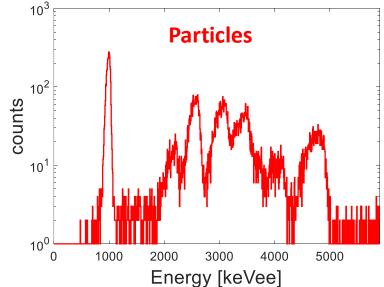




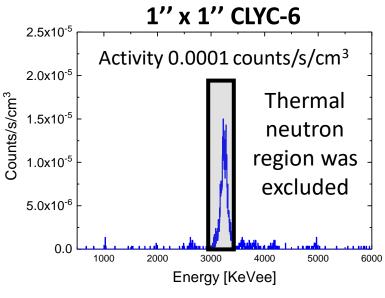
2" x 2" CLYC-7 scintillator

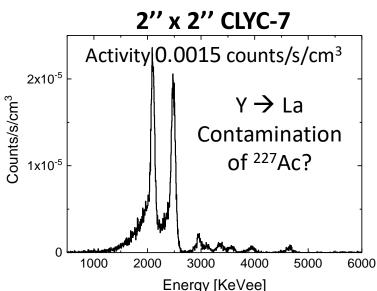


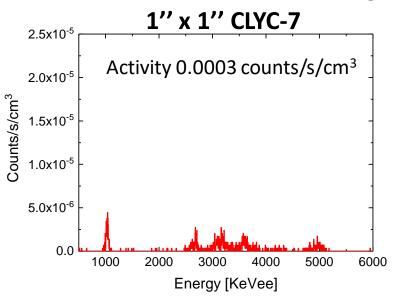


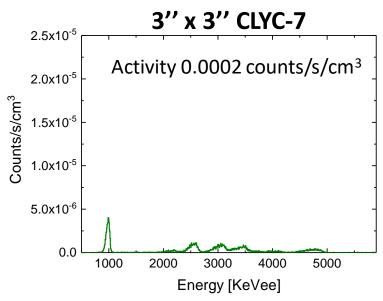


3" x 3" CLYC-7 scintillator

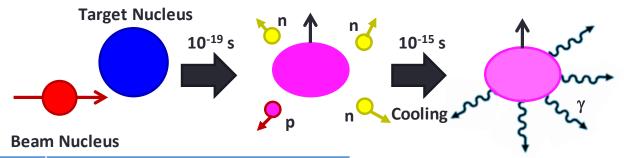








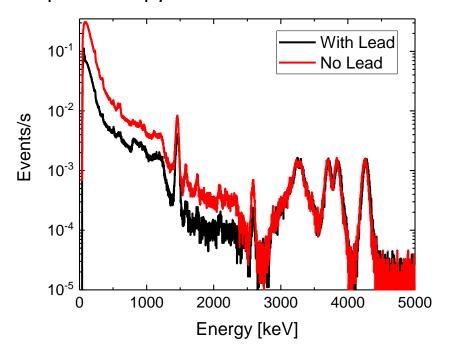
How much is the particle internal activity?

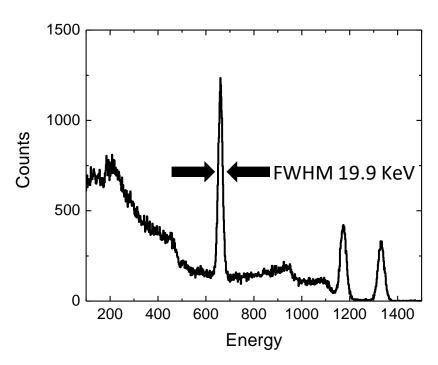


Internal background in nuclear physics experiments

A tool to study nuclear structure properties is the gamma decay of GDR (Giant Dipole Resonance).

GDR can be built on excited nucleus (usually fusion-evaporation reaction and compound nucleus) or on ground state.


Neutron Flux [n/s]	Neutron detected in the 2" x 2 " CLYC [n/s/keV/cm ³]*		
10 ¹	2.18 10-5		
102	2.18 10-4		
10 ³	2.18 10 ⁻³		
104	2.18 10-2		
10 ⁵	2.18 10-1		
10 ⁶	2.18 100		
10 ⁷	2.18 10 ¹		
108	2.18 10 ²		


Max number of background events is $5 \cdot 10^{-6}$ n/s/keV/cm³ for the 2" x 2" CLYC. To have a good subtraction of the background, it has to be at least 10 times smaller than the neutron events. To satisfy this condition the neutron flux has to be around 10^2 n/s. \rightarrow the flux is in the order of the flux of fusion-evaporation reactions ($10^2 - 10^3$ n/s).

^{*} The neutron efficiency was estimated from the values measured for 1" x 1" CLYC-7 detector

CLLB(C) internal background

- ✓ Density of 4.2 g/cm³, light yield of 60 ph/keV, high linearity.
- √ ⁶Li enriched
- ✓ Excellent Energy resolution at 622 keV 3%.
- ✓ Possibility to perform gamma and neutron discrimination.
- √ ³⁵Cl ions to detect and perform neutron spectroscopy

- ✓ The internal radiation due to the presence of La.
- ✓ Alpha Internal radiation is not affected by the shield.
- ✓ The internal radiation is weaker comparable with LaBr₃:Ce internal radiation

Conclusion

- ✓ The elpasolite crystals are suitable for nuclear physics experiments, in particular CLYC and CLLB(C) scintillators
- ✓ The internal background was measured for 4 different CLYC samples
 - √ 1" x 1" CLYC-6: activity 0.0001 counts/s/cm³
 - √ 1" x 1" CLYC-7: activity 0.0003 counts/s/cm³
 - ✓ 2" x 2" CLYC-7: activity 0.0015 counts/s/cm³
 - \checkmark 3" x 3" CLYC-7: activity 0.0002 counts/s/cm³
- ✓ The internal activity is at least 10 times smaller than the neutron flux in nuclear physics experiments.
- ✓ The CLLB(C) energy resolution was measured.
- ✓ The first measurement on the CLLB(C) internal background was performed.

Acknowledgments

N. Blasi¹, S. Brambilla¹, F. Camera^{1,2}, A. Mentana^{1,2}, B. Million¹, and S. Riboldi^{1,2}.

¹INFN Sezione di Milano ²Università degli Studi di Milano

THANK YOU FOR THE ATTENTION