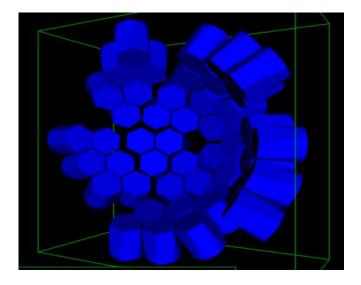
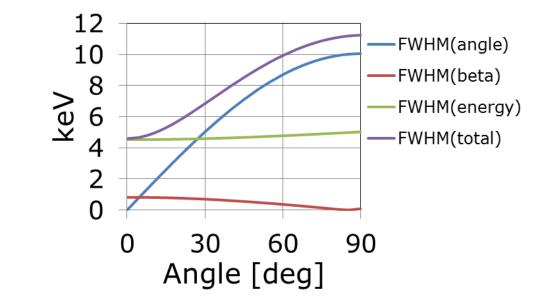

A new setup for direct reaction w/ RIBs

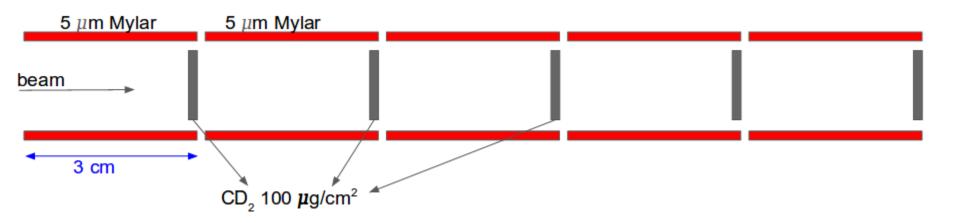
Francesco Recchia


Department of Physics and Astronomy University of Padova



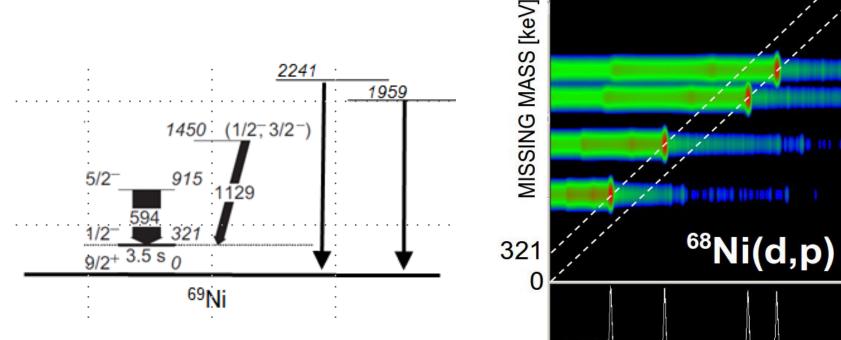
Nuclear Spectroscopy Instrumentation Network of ENSAR2, NUSPIN 2017 - GSI Darmstadt - June 26th - 29th, 2017

1. Response function



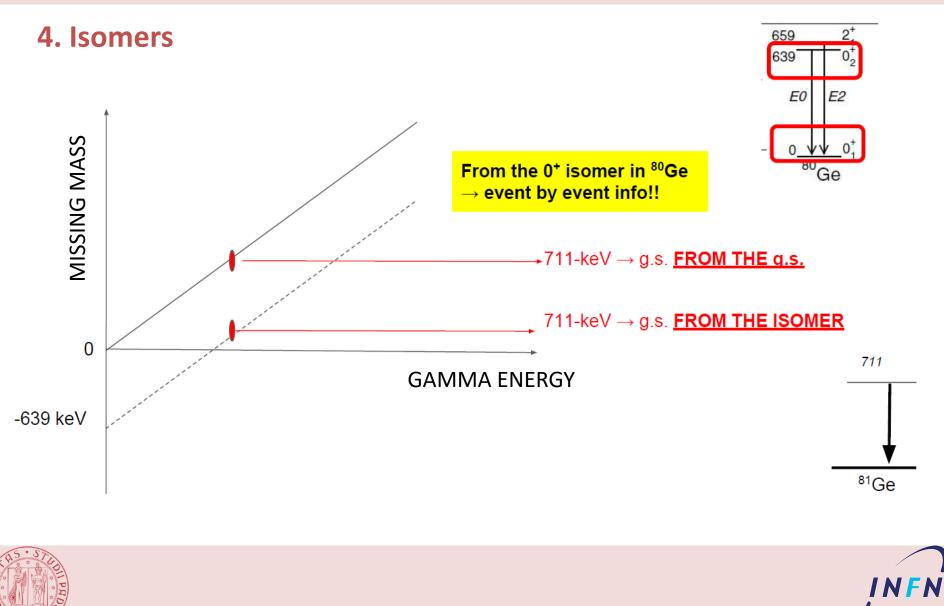
- Packing 15 triple clusters
- Expected efficiency ~ 10%

2. Target thickness

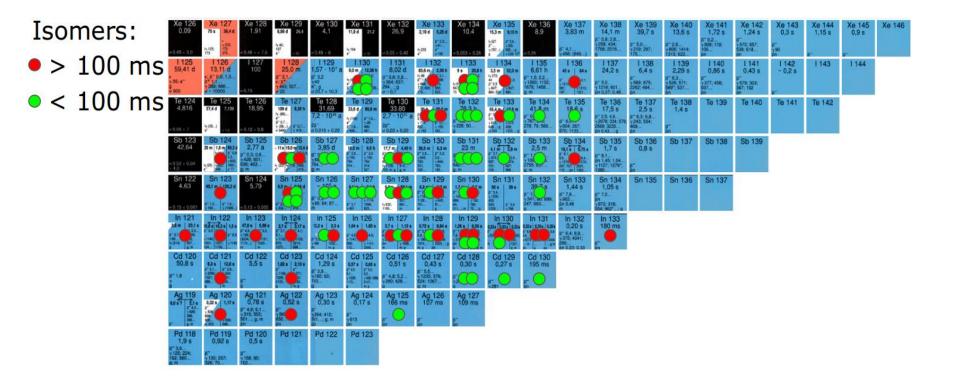

CATS:

- windows: 1.5 um + catodes = 5 um of mylar total
- 5 μ m of mylar \rightarrow 150 keV energy loss for protons

3. Excitation vs Deexcitation



- Anti-Compton gate
- Feeding to isomers



Σ GAMMA ENERGY [keV]

I N F N

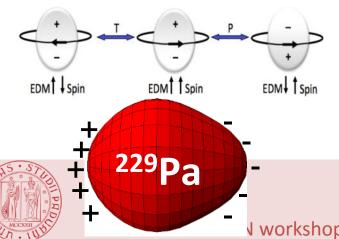
Superconducting Solenoid + Germaniums: nuclear structure

- Spectroscopic factors
- Lifetime measurements: feeding under control
- Neutron unbound states

Superconducting Solenoid + Germaniums: nuclear astrophysics

- ⁷⁹Se(d, pγ)⁸⁰Se used as a <u>surrogate</u> for the
 ⁷⁹Se(n,γ) reaction
- <u>long lived isomer</u> in
 ⁷⁹Se that will be present in the secondary beam
- together with the ⁷⁹Se sitting on the ground state.

Rb 79 23.0 m (\$* 1.8; 2.5 (\$88; 183; 143; 130; 505 (2.10)	Rb 80 30 s	Rb 81 203m 438h 458h 458h 458h 458h 458h 458h	Rb 82 63h 1.27m 17% 77% 9193	Rb 83 86.2 d 40 0 8* 7 520: 530; 553	Rb 84 20.5 m 32.8 d c.2*5.8 1,268, 97.03 445, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 193, 194, 194, 194, 194, 194, 194, 194, 194	Rb 85 72.17
Kr 78 0.355	Kr 79	Kr 80 2.286	Kr 81	Kr 82 11.593	Kr 83	Kr 84 56.987
w 0.17 + 6	h 130 800 g	a4.6 + 7	1: 100 Super	o 14 + 7	2- 410	er 0.09 + 0.02
Br 77 43 m 57.8 h (, 8"	Br 78 6.46 m	Br 79 498 50.69	Br 80 4.425 174 m 174 m 174 m 174 m 174 m	Br 81 49.31	Br 82 61m 35348 1 ⁽⁴⁾ 534 731, 554 675, 654 100	Br 83 2.40 h 9* 0.9. 7 530; 520
Se 76 9.37	Se 77 175 5 7.63	Se 78 23.77	Se 79 39m 48- 10% h/M 10%	Se 80 49.61	Se 81	Se 82 8.73 1.08 · 10 ²⁰ ²⁸⁷ • 0.000 • 0.0058
As 75 100	As 76 26.4 h 7569: 657; 1216	As 77 38.8 h 8° 0.7 7238,521 250 9	AS /8 1.5 h B ⁻ 44 2614:695: 1309	AS /9 8.2 m 96,365; 432,879 m	As 80 15.2 s 5 ⁶ 5.4. 1568, 1645, 1207.	As 81 34 s ^{#*3.8} ^{7468;491}


Superconducting Solenoid + Germaniums: fundamental symmetries

²²⁹Pa: Previously studied w/ 231 Pa(p,t) \rightarrow (p,p')?

Permanent electric dipole moments in atoms

Beyond the Standard Model

- Dominance of matter over antimatter (CP violation)
- ²²⁵Ra, ²²³Rn, ²²⁹Pa are special (several thousand times more sensitive than ¹⁹⁹Hg)

A.I. Levon et al./Nuclear Physics A 576 (1994) 267-307

Fig. 1. Triton spectrum from the 231 Pa(p,t) 229 Pa reaction at $E_p = 22$ MeV and $\theta = 45^{\circ}$. The peaks are numbered according to Table 1.

 NUPRASEN-SPES workshop
 "Probing fundamental symmetries and interactions by low energy excitations with RIB"
 Pisa, December 2017- January 2018

Conclusions

- Physics at future RIBs facilities:
 - SPES
 - ISOLDE
 - ...
- Physics opportunities
 - <u>New setups</u> will be the key to access new physics
 - Open to collaborations: <u>you are welcome</u>!

