High-efficiency and fast-timing scintillators

Convener: Enrique Nácher (IEM-CSIC, Madrid, Spain)

Franco Camera (University of Milano and INFN, Italy):
Response of a large LaBr3:Ce detector to
6-38 MeV gamma rays

Jose Manuel Udias (Univ. Complutense de Madrid, Spain): Digital strategies for time and energy measurement for ultra-fast scintillators

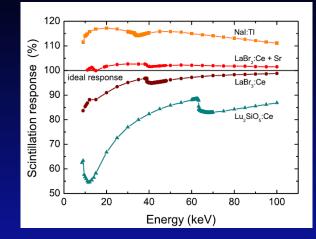
Joakim Cederkal (University of Lund, Sweden): Innovative solutions for the CALIFA forward endcap

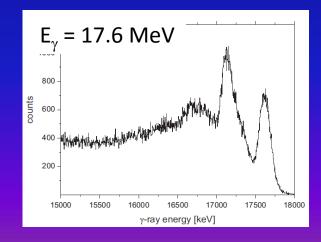
Response of a large LaBr₃:Ce detector to 6-38 MeV γrays and new scintillator crystals

F. Camera

Università di Milano Dipartimento di Fisica and INFN sezione di Milano Via Celoria 16 20133 Milano, Italia

Nuspin 2017


Response of a large LaBr₃:Ce detector to 6-38 MeV γ-rays and new scintillator crystals

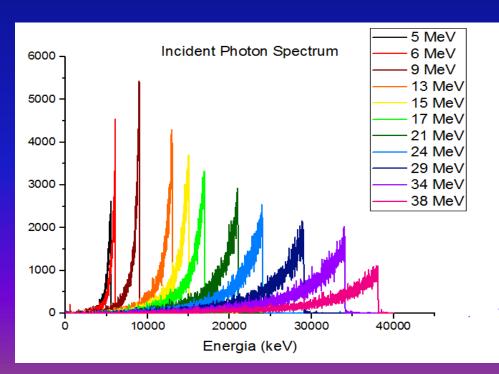


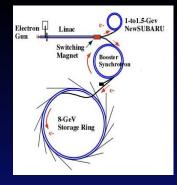
- The problem \Rightarrow measure the detector response at high energy γ -rays
- SPring8
- Experimental Setup
 - Two identical LaBr₃:Ce crystals 3.5" x 8"
 - Two identical PMT (R10233 S/N -55 and -59) + Voltage Divider
- Calibration and Measurements
- Geant 4 Simulations
- Response Function
- New scintillators (CLLBC, CLYC, co-doped LaBr₃:Ce)
- Conclusions and Perspective

Starting Point

- Very low energy γ or x rays (E < 100 keV)
 - Some non-linearity (< 15%) intrinsic of the crystal
 - see Alekhin et al App. Ph. Lett. 102,161915 (2013)
- Low Energy γ -rays (Standard sources: 0.1 < E < 9 MeV)
 - The crystal has a linear behavior
 - Non linear effect mainly due to the PMT-VD
 - see A.Giaz et al. NIM A 729 (2013) 910-921
 - see A.Favalli et. al. App. Rad. and Iso. 68 (2010) 901-904
 - I. Mazumdar et al (NIM A 705 (2013) 85-92)
 - reports a «decrease in pulse height of not more than 0.6%"
- High energy γ-rays E > 10 MeV
 - An accelerator and a nuclear reaction is necessary
 - A possible alternative
 - Laser Compton Scattering (NewSubaru Hiγs)
 - Future ELI-NP -> FWHM 0.3 %

Spring-8


Central region of the laser-Compton scattering UCS y - ray Vacuum duct Mirror LCS y - ray UCS y - ray

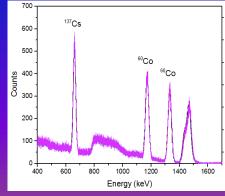

- Linac (1 GeV)
- Sincrotrone (8 GeV)
- Electron Storage Ring (8 GeV)
- Electron Storage Ring (1-1,5 GeV)
- SACLA

•

NewSUBARU:

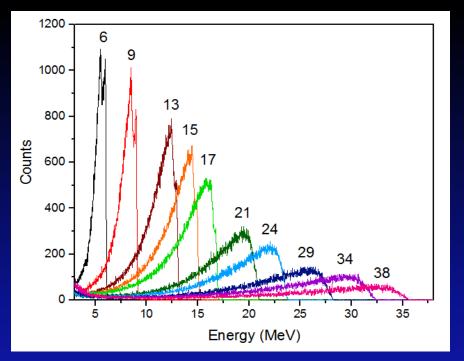
- laser Compton scattering (LCS)
- E_{e-} = 0.5 1.5 GeV.
- Laser Nd(w): YVO₄ with wavelength 1064 nm
 - 'Almost'-monocromatic gamma-rays

LaBr₃(Ce):


- Light Yield 6300 ph/keV
- Decay time 16 ns
- Densiy 5,08 g/cm³
- Energy resolution 3.1 % ¹³⁷Cs
- Time Resolution ~ 1 ns

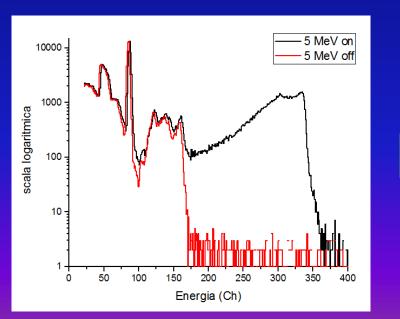
Two crystals + two PMT+VD Crystal S/N L824 and K604 PMT R10233 S/N -55 and -59

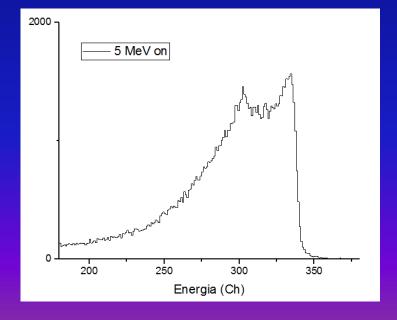
LaBr-PRO Amplifier


- Two ADCs Amptek MCA8000D
 - off beam on beam spectra

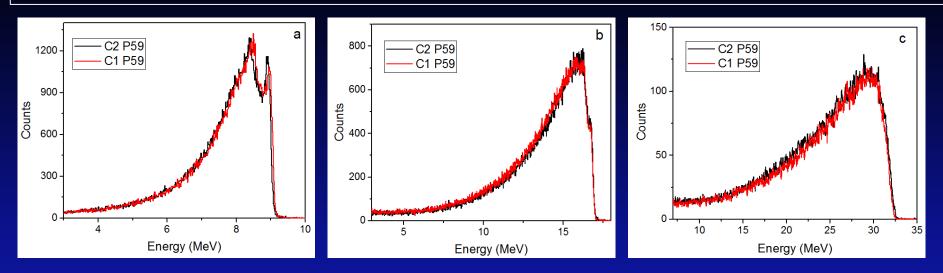
Electronic non linearity up to 5.5 V \Rightarrow 0.3% %

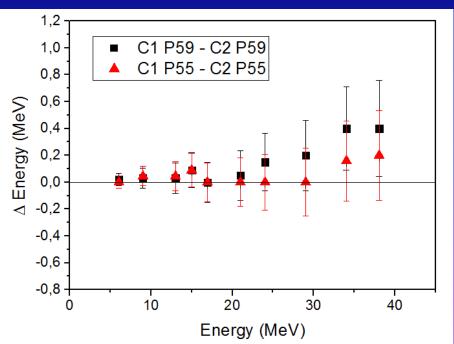
Signal Amplitude	$\Delta E (keV)$	$\Delta E (keV)$
[mV]	C1	C2
≈ 157	20.5	20.7
≈ 519	19.7	20.2
pprox 2048	19.8	20.1
≈ 3357	19.4	19.8

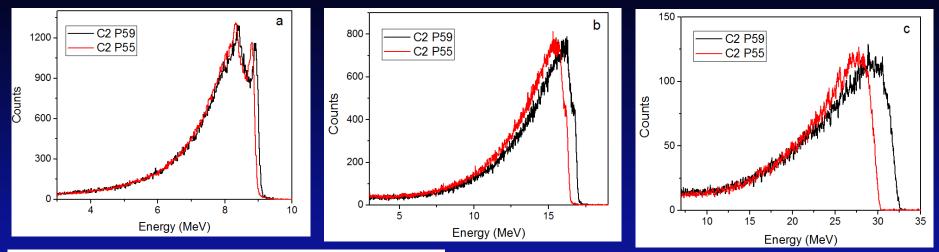

		1
Misura 1	RF - CW	
E(γ) MeV	E (e-) MeV	Laser Power
5,53	550	10%
6,04	575	3%
9,00	704	2%
13,00	849	3%
14,99	914	2%
16,93	974	2%
20,99	1087	1%
24,02	1162	1%
29,02	1273	2%
34,03	1380	2%
38,00	1460	2%

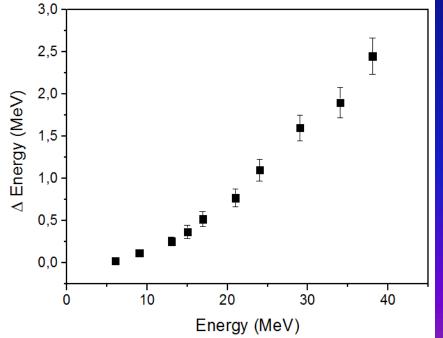


2 Crystals + 2 PMT+VD


Test two crystals with same PMT
Test two PMTs with same crystal
30 mV anode signal at ¹³⁷Cs
HV = - 810 V and - 950 V

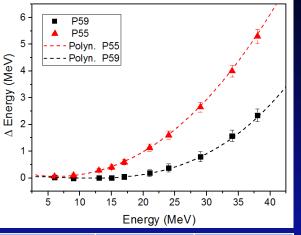

- Simulation LCS + GEANT4


Two crystals - One PMT



The two crystals have the same response (within the error bars) for high energy γ -rays

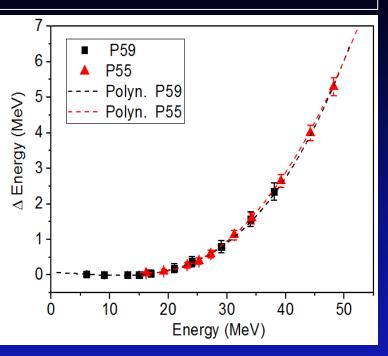
One crystal - Two PMTs

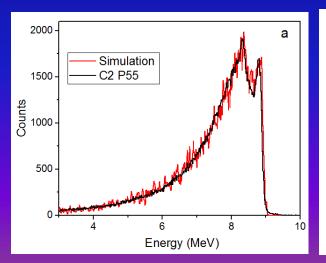


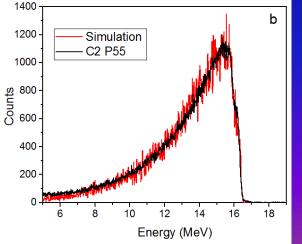
- The difference increases with γ-rays energy
- The difference starts at 6 MeV
- From 21 to 38 MeV the spectral line-shape changes
- The two PMTs have a very different response

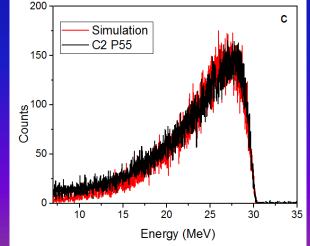
 even though they are of the same model, they are from the same production run and have been delivered in the same moment

Simulations (LC5 + Collimation + Geant)

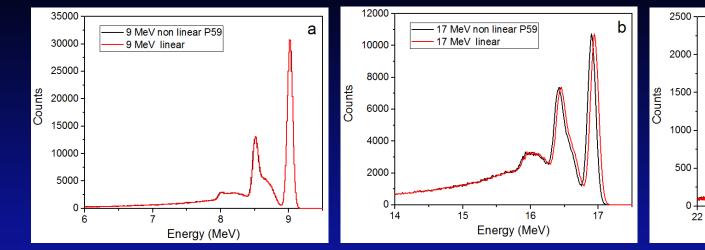


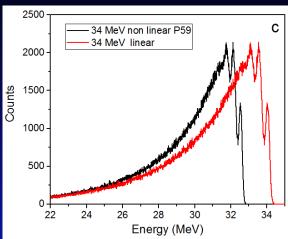

	P59	P55	
а	0.00007	0.00002	
b	-0.001	0.0043	
С	-0.0053	-0.057	
d	0.078	0.2455	

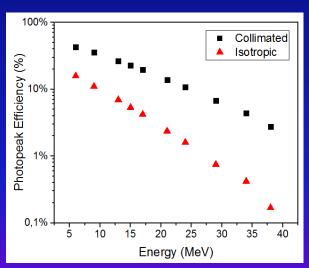

Crystals have the same response


PMTs have different responses. A shift of 10.2 MeV makes the two NON- linearity curves overlap

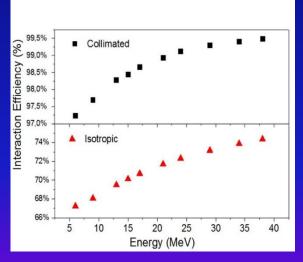
Simulation nicely reproduces measured spectra

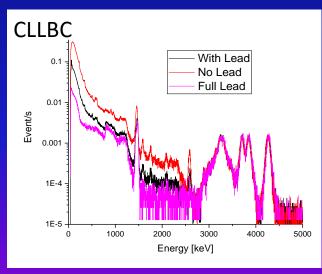


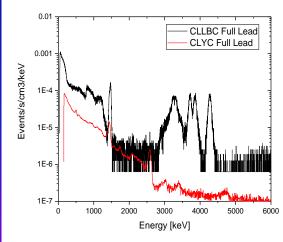


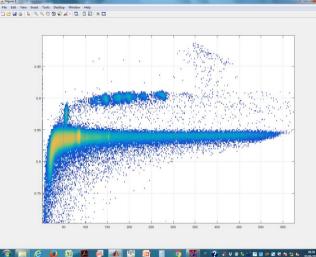


Response Function




Simulations work on measured data.


We performed simulations with monocromatic high energy gamma rays



New materials

Material	Light Yield [ph/MeV]	Emission λ _{max} [nm]	En. Res. at 662 keV [%]	Density [g/cm ²]	Principal decay time [ns]
Nal:Tl	38000	415	6-7	3.7	230
CsI:TI	52000	540	6-7	4.5	1000
LaBr₃:Ce	63000	360	3	5.1	17
Srl ₂ :Eu	80000	480	3-4	4.6	1500
CeBr ₃	45000	370	~4	5.2	17
GYGAG	40000	540	<5	5.8	250
CLYC:Ce	20000	390	4	3.3	1 CVL 50, ~1000
CLLBC	45000	Blue	3	4.1	

LaBr₃:Ce Co-Doped are now available from St.Gobain – 17 keV at 661.7 keV

Conclusions and Perspective

Conclusions:

- The response function of two large volume LaB₃:Ce crystals + two PMTs+VD was measured
- Within the error bars the crystals behave in an identical way
- The two PMTs behave in a different way
 - They are of the same model and from the same production run
- Using simulations we have extracted the non linearity curve of the two PMTs
- Simulations reproduce measured data
- There are new and very interesting scintillators (i.e. CLYC, CLLB, CLLBC, Co-Doped, LaBr₃:Ce, ...) with excellent performances

• Perspectives

- Is the NON-Linerity curve 'universal' ? Probably not. May be it is specific for that particular model of PMT. We will perform other NON-Linearity measurements to verify this
- Non linearity curves will be applied to measured spectra

Thanks to

<u>G. Gosta</u>, N. Blasi, B. Million, A. Giaz, O. Wieland, F. M. Rossi H. Utsunomiya, T. Ari-izumi, D. Takenaka D. Filipescu, I. Gheorghe

- From Milano
- From NewSubaru
- From ELI-NP