

Digital strategies for time and energy measurement for ultra fast inorganic scintillators

Víctor Sánchez-Tembleque
V. Vedia
M. Carmona
M. García
L. M. Fraile
J. M. Udías (jose@nuc2.fis.ucm.es)

Grupo de Física Nuclear, Dpto. de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, (Avda. Complutense s/n, 28040 Madrid) Universidad Complutense de Madrid, CEI Moncloa

Fully digital (FD-DAQ) nuclear pulse processing for (from) the layman

What and why?

Fully digital

 Digitize the raw (or as raw as convenient) signal (ADC) with adequate resolution and number of samples per second. Process the pulse to get time and/or energy numerically, i.e., with a program

Why?

- Simplicity: the same board can acquire and digitize data for energy and time coincidences. Preserve pulse properties.
- Flexibility. Any kind of processing and filter is possible, median filter, recursive filters, FFT and frequency based filters. It is not limited to the ones implemented in analog circuits
- Stability and noiseless: digitized data are further inmune to noise, temperature changes, etc

Coincidence experiment

Conventional DAQ

FD-DAQ

Truncated conical crystals 1x1.5x1.5" LaBr₃(Ce)

PMT Hamamatsu R9779

FATIMA http://nuclear.fis.ucm.es/fasttiming

Performance evaluation of novel LaBr3 (Ce) scintillator geometries for fast-timing applications, V. Vedia, M. Carmona-Gallardo , L.M. Fraile , H. Mach, , J.M. Udías, https://doi.org/10.1016/j.nima.2017.03.030

 Disadvantages: quite a different world from the one of analog electronics designers. Different expertise and equipment. Extremely fast evolving technologies, difficult to keep up with progress

 A lot on information on continuous D-DAQ and Digital Signal Processing (DSP) (audio, video), but much less on Digital Pulse Procesing (DPP)

Resolution, speed, price

 High speed, high resolution, continuous (free-running) ADC exist, Acquitek digitizers, >20 Gs/s, >10 GHz bandwidth, continuous. Expect them in the 50 keuro range

 We have pulses, do we need continuous digitizing capabilities? Not really

DRS4@PSI

http://drs.web.psi.ch

DRS4 Evaluation Board
4 channels, 1024 samples per channel in a pulse
1-5 GS/s
12 bit
USB power
500 pulses / s in the PC, full 4 channels, 12 bits at 5 GS/s

Digital Pulse Processing (DPP)

C. Tintori (CAEN) V. Jordanov *et al.*, NIM **A353**, 261 (1994)

How to measure energy

- All the algorithms commonly implemented in analog stages are available: semigaussian shaping plus peak detection, gated integrator, trapezoidal shaping
- But a simple Simpson or trapezoidal integration plus substraction of the baseline would do just as well.
 Pulse Shape correction / balistic deffect may be needed, but it is trivial with FD-DAQ

Energy

Balistic deffect / pulse shape correction

More conspicuous with HPGe detectors

0.3% (FWHM/E) - 662 keV* resolution

Same energy resolution is obtained with trapezoidal shaping, or by Pseudo-gaussian shaping plus peak height analysis

Back to LaBr results

	Energy resolution (FWHM/E)		
Method	511 keV	662 keV	1333 keV
Conventional	5.4%	4.6%	3.4%
FD	5.3%	4.6%	3.3%

How to measure time

- We need to start/stop a clock based upon the arrival of the electronic signal (pulse).
- We can use the rise time part of the pulse (high slope), and a threshold (leading edge) to create a time stamp at the precise moment that the pulse crossed the level.
- Interpolation may be useful. We can set the crossing level at a given value, similar to analog leading edge discrimination.
- With this method significant time-energy walk will be expected. Larger pulses will cross sooner the level than smaller ones.

16/34

300

250

100

Time-energy walk can be corrected

truncated 1X1X1.5"
LaBr₃ Co-60
Absolute upper level discriminator time stamps

-0.2

1.) The **traditional** way, turn the pulse into a bipolar one, use the crossing point as time stamp. Should be more independent on the amplitude of the peak. Use a timing filter: CR, Constant fraction discrimination (CFD) or similar strategies. Valid both for digital or analog pulse processing

2.) A simple procedure, use crossing of *relative* thresholds for time stamping, instead of absolute ones: provides independence on the amplitude of the pulse. Easier implemented in digital world than in analog one

4.) FD-DAQ opens the way to sophisticated algorithms to produce accurate time stamp for each pulse. Machine-learning algorithms are being employed succesfully.

20/34

Time filters depend on several parameters: threshold levels in both detectors, delay and amplitude of inverted signal (CFD), time filter parameters, etc.

We have the pulses digitized, let's have a machine optimization algorithm to look for the best combination of parameters. We use a Genetic Algorithm to pick the parameters

Promote this to a more general strategy: optimize all the parameters of an 'arbitrary' digital filter

Promote this machine learning strategy. Let's try a rather general digital filter:

$$y[n] = A * y[n-1] + B * x[n] + C * x[n-1]$$

This is a recursive filter (0<A<1, -1<B,C<1), let's allow for a machine learning algorithm to look for the best combination of parameters A, B; C. It is a generalization of a CR+R'C' digital filter.

To the resulting pulse we apply the relative upper level crossing time stamp. The GA choses the best relative thresholds for each detector.

22/34

Results for CRT, FWHM, two BrLa(Ce) truncated cone+PMT Hamamatsu R9779 A -1300 V

Method	Na22	Co60	
Conventional CFD + TAC	226 +/- 4 ps	156 +/- 4 ps	
In silicoCFD	208.4 +/- 0.5 ps	143.1 +/- 0.6	
Machine learned filter	193.7 +/- 0.6 ps	136.1 +/- 0.6	

Performance evaluation of novel LaBr3 (Ce) scintillator geometries for fast-timing applications, V. Vedia, M. Carmona-Gallardo , L.M. Fraile , H. Mach, , J.M. Udías, https://doi.org/10.1016/j.nima.2017.03.030

Machine learning processing led to 15% better time resolution than the conventional approach

25/34

SiPM FD, with DRS4

- 2x SensL FJ 30035, 3x3 mm2, 27 V bias
- SiPM with slow and fast output

• 2x 1.5x1.5x7 mm3 LYSO crystals Radioactive Source

 CRT with FD-DAQ (relative threshold, manually chosen parameters)

⁶⁰Co: 88 ps FWHM fast output, 103 ps slow output

²²Na: 103 ps FWHM fast output,

122 ps slow output

Optical

Grease

SiPM

Readout

Electronics

Conclusions

- FD-DAQ of pulses from very fast inorganic scintillators become possible with unexpensive digitizers
- FD processing opens the way to machine learning algorithms to improve the performance of time pickup
- Up to a 15% better time resolution is obtained with the unguided machine learning algorithm
- Time resolutions smaller than 100 ps FWHM per detector is made possible on large detectors.