Self Activity of the LaBr₃ Crystals

Summary and Outlook

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Sub-barrier fusion cross section measurements with gamma-particle-coincidences with STELLA

Marcel Heine for the Collaboration

IPHC/CNRS Strasbourg

6/28/2017

Motivation 000	Experimental Approach	Self Activity of the LaBr ₃ Crystals	Summary and Outlook
Outlook			

Deep Sub-barrier Fusion Cross Sections

- Network Reaction Flow during Carbon Burning
- Resonances in ¹²C Fusion
- The (Incomplete) Story of Sub-barrier ¹²C Fusion

2 Experimental Approach

- S-Factor Measurements of ¹²C+¹²C Reactions
- The STELLA Station
- Proton-Alpha Separation

Self Activity of the LaBr₃ Crystals

- Temperature Drift
- Re-calibration of Experimental Data

Motivation	Experimental Appro
000	

Self Activity of the LaBr₃ Crystals

Summary and Outlook

Network Reaction Flow during Carbon Burning

A. Chieffi et al., APJ502, 737, (1998)

イロト イロト イヨト イヨト

¹²C +¹²C
$$\rightarrow$$
²⁴ Mg^{*} \rightarrow ²⁴ Mg + γ ; $Q = 13.93$ MeV
 \rightarrow ²⁰ Ne + α ; $Q = 4.62$ MeV
 \rightarrow ²³ Na + p; $Q = 2.24$ MeV
 \rightarrow ²³ Mg + n; $Q = -2.60$ MeV

ach

æ

Motivation	Experimental Approach	Self Activity of the LaBr ₃ Crystals	Summary and Outlook
000			
Resonances in ¹² C Fusio	on		

Measurement below the Coulomb barrier:

E.F.Aguilera et al., PRC73, 064601, (2006)

- γ Aquilera *et al.*, High *et al.*, Kettner *et al.*, Erb *et al.*, Satkowiak *et al.*, Dasmahapatra *et al.*
- p/α Patterson *et al.*, Mazarakis *et al.*, Becker *et al.*
- → 'unified' data sets

$$S = E\sigma(E)\exp(2\pi\eta)$$

cluster states in ²⁴Mg branching into ²⁰Ne, ²³Na

< ロ > < 同 > < 回 > < 回 > < □ > <

Motivation ○○●	Experimental Approach	Self Activity of the LaBr ₃ Crystals	Summary and Outlook
The (Incom	plete) Story of Sub-barrier ¹² C Fusion		
+ - + + + + +	J.R. Patterson <i>et al.</i> , APJ 157, 367, (1969) G.J. Michaud and E.W. Vogt, PRC 5, 350, (1972) M.G. Mazarakis and W.E. Stephens, PRC 7, 1280, (R.G. Stokstad <i>et al.</i> , PRL 37, 888, (1976) P.R. Christensen <i>et al.</i> , Nucl. Phys. A 280, 189, (197 M.D. High and B. Čujec, NIM A 282, 181, (1977) KU. Kettner <i>et al.</i> , PRL 38, 377, (1977)	• gammas/ • thin/thick	particles target
+ + - +	 K.A. Erb <i>et al.</i>, PRC 22, 507, (1980) H.W. Becker <i>et al.</i>, Z. Phys. A 303, 305, (1981) Y. Suzuki and K.T. Hecht, Nucl. Phys. A 388, 102. (1 B. Čujec <i>et al.</i>, PRC 39, 1326, (1989) L.R. Gasques <i>et al.</i>, PRC 72, 025806, (2005) E.F. Aguilera <i>et al.</i>, PRC 73, 064601, (2006) 	(982) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	 Patterson Mazaraki Hoho Ketiner Ketiner Satowiak Dasmanapatra
+ + + +	L. Barrón-Palos <i>et al</i> , Nucl. Phys. A 779, 318, (2006 D. Jenkins <i>et al.</i> , PRC 76, 044310, (2007) C.L. Jiang <i>et al.</i> , PRC 75, 015803, (2007) T. Spillane <i>et al.</i> , PRL 98, 122501, (2007) J. Zickefoose, Ph.D. thesis, U. of Connecticut (2010)) 4.5 5.0 E _c	5.5 6.0 6.5 m.(MeV) al., PRC 73 , 064601, (2006)
+ + +	C.L. Jiang <i>et al.</i> , NIM A 682, 12, (2012) X. Fang <i>et al.</i> , Jour. Phys. 420, 012151, (2013) C.L. Jiang <i>et al.</i> , PRL 110, 072701, (2013) A.A. Aziz <i>et al.</i> , PRC 91, 015811, (2015)	resonancextrapola	es tions

+ A. Tumino et al., EPJ Conf. 117, 09004, (2016)

+ B. Bucher et al., PRL 114, 251102, (2015)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $S = E\sigma(E)\exp(2\pi\eta)$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

- Gamow window: fusion cross sections in the nbarn range
- extremely sensitive to background contributions
- → gamma-particle (coincidence) technique

Experimental Approach

Self Activity of the LaBr₃ Crystals

Summary and Outlook

The Mobile Gamma Charged Particle Detection System STELLA

M. Krauth, G, Heitz, P. Dené

- 36 LaBr₃ with the **UK FATIMA** collaboration
- three annular DSSSD
- trigger less time stamped data streams
- high intensity stable beam:
 Andromède at IPN (Orsay)
- rotating target mechanism
- ultra-high vacuum: 10⁻⁸ mbar (carbon build-up)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- monitor detectors: normalization
- + Faraday cup: beam current

Motivation

Experimental Approach

Self Activity of the LaBr₃ Crystals

Summary and Outlook

STELLA at Andromède at IPN (Orsay)

Motivation 000	Experimental Approach	Self Activity of the	e LaBr3 Crystals	O Summary and Outlook
Focus of the F	irst Campaign			
۲	12 C+ ¹² C at $E_{beam} = 5.6$ ← first excited states in ²⁰ Ne	– 11.1 MeV e, ²³ Na:		

- Q-value, cascading
- → detect 0.440 MeV, 1.634 MeV gammas fixed target experiment:
 - ${}^{12}C^{2,3+}$ beam, $I = 100 \rightarrow 800 \text{ pnA}$

•
$$\Delta t = 1/2h \rightarrow 1 1/2weeks$$

Motivation 000	Experimental Approach	Self Activity of the LaBr ₃ Crystals	Summary and Outlook
Bookground Doduction fr	em Coincidence Condition		

- particle detector spectrum in backward direction, 150ns gate
- coincidence suppresses background by two orders of magnitude
- full-energy detection efficiency at 0.44MeV: 6%

Motivation 000	Experimental Approach	Self Activity of the LaBr ₃ Crystals	Summary and Outlook
Proton-Alpha Separation			

- synchronization of 1GHz γ DAQ and 125MHz particle DAQ
- insufficient timing to resolve ToF gap between protons and alphas
- pulse form difference impacts timing though

G. Fruet, PhD thesis

3.1

Experimental Approach

Self Activity of the LaBr₃ Crystals ●○○

Summary and Outlook

Drift of the Gamma Detectors with Temperature Difference

- 24h run, blocks of 45min
- o drift of 1.47MeV line: 5keV
- ? options for correction

Self Activity of the LaBr₃ Crystals $\circ \bullet \circ$

Summary and Outlook

The Decay of ¹³⁸La

 \rightarrow Simulate decay pattern of crystals placed in the gamma array and fit experimental data to the values of the nominal energy depositions.

- red: simulation
- blue: experiment
- black: some exponential
- green: fit exponential
 ¹⁵²Eu run:
- linear energy response
- energy resolution... in ROI

(日)

3

- marginal effect/correction (dotted blue) in current data ($\Delta T \approx 10^{\circ}$ C)
- promising option for runs of several weeks

Motivation 000	Experimental Approach	Self Activity of the LaBr ₃ Crystals ○○●	Summary and Outlook
Re-calibration of Experime	ental Data		

- red: simulation
- blue: experiment
- black: some exponential
- green: fit exponential
 ¹⁵²Eu run:
- linear energy response
- energy resolution...in ROI

イロト イポト イヨト イヨト

-

- marginal effect/correction (dotted blue) in current data ($\Delta T \approx 10^{\circ}$ C)
- promising option for runs of several weeks

Motivation 000	Experimental Approach	Self Activity of the LaBr ₃ Crystals ○○●	Summary and Outlook
Re-calibration of Experime	ental Data		

- red: simulation
- blue: experiment
- black: some exponential
- green: fit exponential
 ¹⁵²Eu run:
- linear energy response
- energy resolution... in ROI

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- marginal effect/correction (dotted blue) in current data ($\Delta T \approx 10^{\circ}$ C)
- promising option for runs of several weeks

Motiv	ation

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

STELLA project

- astrophysics motivation for fusion cross sections
- relevance for nuclear physics models
- experimental technique and reduction gates
- UK FATIMA detectors
 - experimental arrangement and features
 - instant calibration routine

six weeks of beam time starting September:

- increase beam energy with rotating target in place
- measurement station for target thickness

Thank You For Listening!!

Experimental Approach

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

P. Adsley^{1,2}, F. Agnese³, C. Beck³, L. Charles³, O. Clausse³, S. Courtin^{3,4}, E. Dangelser³, P. Dené³, S. Della Negra², G. Fruet³, L. Gross³, F. Haas³, F. Hammache², M. Heine³, G. Heitz³, M. Imhoff³, D.G. Jenkins¹, O. Kirsebom⁵, H. Kocher³, M. Krauth³, J. Lesrel², M. Loriggiola⁶, C. Mathieu³, A. Meyer², D. Montanari^{3,4}, L. Morris¹, M. Richer³, P.H. Regan^{7,8}, M. Rudigier⁷, C. Ruescas³, N. de Séréville², C. Stodel⁹, D. Thomas³ and C. Wabnit³

¹ University of York, York, (UK)

² IPN d'Orsay, CNRS/IN2P3, PSUD 11, Orsay, (France)

³*IPHC/CNRS*, Strasbourg, (France)

⁴USIAS/Université de Strasbourg, Strasbourg, (France)

⁵Åarhus Universitet, Åarhus, (Denmark)

⁶ INFN-LNL, Legnaro, (Italy)

⁷*University of Surrey*, Guildford, (UK)

⁸National Physical Laboratory, Teddington, (UK)

⁹GANIL, Caen, (France)