Simulation on the DEGAS array

Guang-Shun LI & Cesar Lizarazo

Gammaspektroskopie GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

HISPEC/DESPEC program at the NUSTAR project

(picture from DESEPC collaboration) Get first information on lifetimes, decay modes, Q-values and scheme of excited levels

RISING configuration

RISING configuration

DEGAS configuration candidates

Get first information on lifetimes, decay modes, Q-values and scheme of excited levels

RISING configuration

DEGAS configuration candidates

DEGAS *I* configuration

Simulation on the spectra of HPGe with BGO shields

HPGe detector and BGO shields

Geometry in Geant4

Source: ⁶⁰Co in front of HPGe

Simulation on the spectra of HPGe with BGO shields

E_Ge_a

Simulation on Eruoball Cluster and BGO Back-catcher

EUROBALL Cluster and BGO Back-catcher

Source: ¹³⁷Cs top and bottom

Geometry in Geant4

Energy distribution of full energy sharing events

Smaller scattering angle at Ge leads to smaller energy deposition in Ge and larger energy depostion in BGO

Energy distribution of events in coincidence

Simulation on the Clover detector

Clover detetor

Geometry in Geant4

Source: ¹³⁷Cs in front of the detector

Percentage of two-elements energy sharing event

Absolute efficiency measurement

Geometry in the simulation One neutron transfer reaction in the ⁹Be+⁸⁹Y system G. S. Li et al. EPJ WoC 86, 00024 (2015)

Comparison of the absolute efficiency

10% insensitive volume of cone shape is assumed in the simulation

GSI

Simulation on the RISING configuration

15 EUROBALL Clusters, consist of 105 Ge crystals, in three angular rings, 22 cm to the center

Simulation on the DEGAS / configuration

Mechanical lay-out of the DEGAS detector (CAD design file) 10% insensitive volume of at back of Ge is assumed

26 DEGAS clusters, consist of 78 Ge crystals, distance from the center: 12cm(back), 12cm(top and bottom), 22cm(left and right)

Simulation on the DEGAS *II* configuration

Mechanical lay-out of the DEGAS detector (CAD design file) 10% insensitive volume of at back of Ge is assumed

28 DEGAS clusters, consist of 84 Ge crystals, a space with cross section of 26 cm \times 11 cm inside is reserved for the implantation detector

Pb wall

8 cm Pb-Wall assumed for all the three configurations

Gamma source considered

Gamma ray emitted from center of 8cm x 24 cm plate (AIDA), with intensity of Gaussian distribution

Non-cascade gamma ray

Group 1	121.8	244.7	441.1	778.9	1112.1	1408.0
Group 2	81.0	356.0	661.7	867.4	964.1	1332.5

Efficiency of each DEGAS cluster

Efficiency of each DEGAS cluster

Comparison of the efficiency

GSI

Gamma source considered

Add-back analysis

Add-back analysis

Interactions in the DEGAS **//** configuration

Interactions in the DEGAS **//** configuration

Two crystals shared full-energy events, 70% happen between neighbors

Interactions in the DEGAS **//** configuration

- Two crystals shared full-energy events, 70% happen between neighbors
- Try to avoid using lower energy gamma ray to add back, to reduce the risk of "false" gamma-ray summing

Add-back factor from the selected window

Add-back factor from the selected window

Possibility of wrong crystal assignment in add-back

Comparison of the background suppression

Comparison of the background suppression

Future work on simulation—DEGAS / as example

Additional scintillators and passive shielding elements in the gaps of the DEGAS configuration, like the ones in the picture

- Good agreement between simulation and experiment results...spectra, scattering and efficiency
- The DEGAS II configuration, 28 clusters in a more compact box goemtry gives the largest efficiency and best background suppression
- Add-back using inter-cluster and corss-cluster neighboring crystals give improved efficiency
- Improvement is expected using additinal scintillators and passive shielding elements in the gaps

J. Gerl, I. Kojouharov, H. Schaffner, M. Górska, S. Saha.... GSI, Darmstadt

DEGAS workgroup

M. L Liu, X. H. Zhou IMP, Lanzhou

Thank you for your attention!

