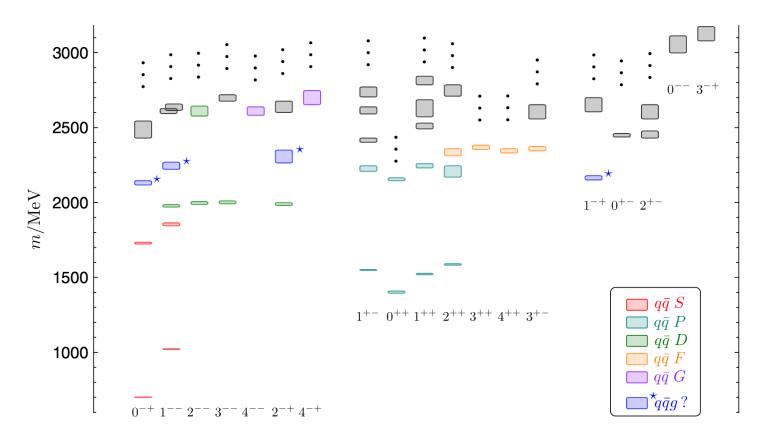
Light Meson Spectroscopy at Phase-One

Marc Pelizäus

Ruhr-Universität Bochum

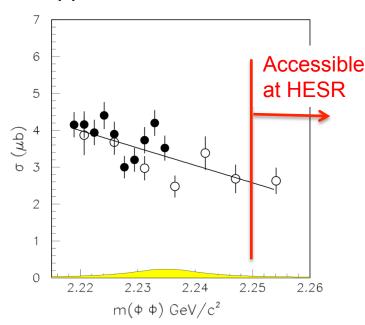
Light Meson Spectrum


Color-less $q\bar{q}$ states (q = u, d, s) Multipletts of $q\bar{q}$ mesons with same J^{PC} Additional color-less states:

• Glueballs: gg, ggg

Hybrids: qqg

Tetraquarks: (qq̄)(qq̄)

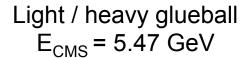

Light Mesons in pp Annihilation at PANDA

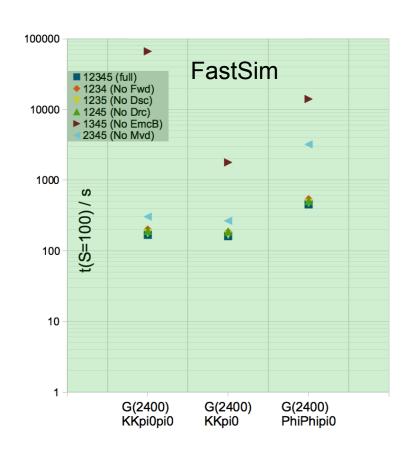
- Antiproton-proton annihilation
 - huge cross sections for light meson production: 100 nb ... 10 μb
 - gluon rich processes → production of glueballs and hybrids
- Access in formation to
 - neutral resonances with m > 2.25 GeV/c² and
 - non-exotic quantum numbers
- Access in production to all resonances with
 - at least one recoil meson and
 - variable center-of-mass energy (→ tunable phasespace)
- Many broad and overlapping states
 - requires (often) partial wave analysis techniques to identify resonances

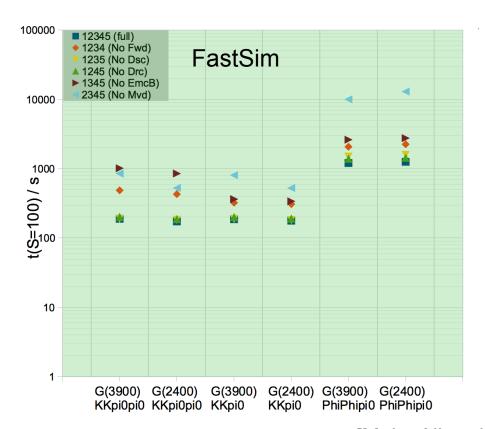
Search for glueballs in ΦΦ

- One channel related to light meson spectroscopy p̄p → ΦΦ [K. Goetzen]
- Study of narrow f_J(2230) previously reported by MARK III and BES II
 - outdated, since this state is excluded by Babar and BES III with superior statistics
 - not accessible in formation at HESR
- Still to do: Scan above 2.25 GeV
 - Jetset (1998): cross section >100x larger than expected from OZI rule → gluonic component?
 - broad f₂(2300) and f₂(2330) glueball candidates
- Need an update on this topic

p̄p→ΦΦ Cross Section

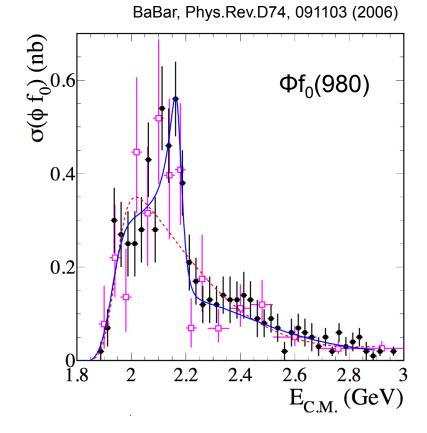

Jetset, Phys. Rev. D 57, 5370 (1998)


Glueball Studies


- Studies performed for the scrutiny report
 - focus on feasibility and performance for 6 different detector options
 - carried out in fast simulation
- Study of glueball production in p̄p→K+K-π⁰, K+K-π⁰π⁰ and ΦΦπ⁰
 - assuming cross section of 10 nb (including decays to final state)
 - background cross sections 50 to 80 mb
- "Light" glueball m = 2400 MeV/c² (could be 2⁺⁺ or 0⁻⁺)
 - E_{CMS} = 2.57 GeV and 5.47 GeV
 - could be broad, study final states w/o intermediate resonances
- "Heavy" glueball m = 3900 MeV/c²
 - $E_{CMS} = 5.47 \text{ GeV}$
 - could be narrow, assume $\Gamma = 10 \text{ MeV}$
 - search for narrow signal in production

Glueball Studies

Light glueball at $E_{CMS} = 2.57 \text{ GeV}$



[Malte Albrecht]

MSV (10³¹ cm-²s⁻¹): 800 ... 8000 / d reconstructed signal events depending on channel

Y(2175)

- Y(2175)→Φf₀(980) observed in ISR events e⁺e⁻ → γ_{ISR}K⁺K⁻π⁺π⁻
 m ~ 2175 MeV/c²; Γ~ 60 MeV
- Confirmed by BES III in J/ψ→Y(2175)η [2014]
- Similar: Y(4260) → J/ψ f₀(980)
 also observed in ISR events
- Is Y(2175) a light analogue to the Y(4260)?

If yes: Are there other analogies of the X, Y, Z states in the light meson sector?

Y(2175) Studies

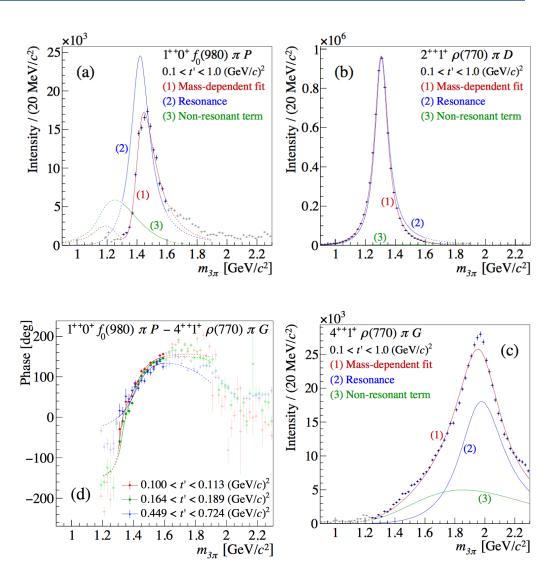
- $\bar{p}p \to Y(2175)\pi\pi, Y(2175)\pi^0$ at E_{CMS}= 3 GeV
 - Y(2175) reconstructed in $\Phi \pi^+ \pi^-$ and $\Phi \pi^0 \pi^0$
 - assumed signal cross section: 100 nb
 - background cross section: 70 mb

Beam-time to record 1000 reconstructed events in the $\Phi\pi^{+}\pi^{-}\pi^{0}$ final state

	$f_{BR} = 5 \%$	$f_{BR} = 10 \%$	$f_{BR} = 30 \%$
$L = 2.10^{30}$	99.5 d	24.9 d	2.8 d
$L = 2.10^{31}$	9.95 d	(2.49 d)	0.28 h
$L = 2 \cdot 10^{32}$	0.995 d	0.249 d	0.028 h

[Ch. Motzko]

FastSim, full detector setup


MSV (10³¹ cm-²s⁻¹): 200 / d reconstructed signal events

Full simulation study: Efficiency too low after kinematic fit (need to be redone w/ updated kinematic fitting package)

Recent Observation of a₁(1420) at Compass

- Compass: Observation of a new axial-vector meson in diffractive 3π dissociation (m~1414 MeV and Γ~153 MeV)
 - 46 x 10⁶ events analyzed
 - 88 waves fitted
- Iso-spin partner of $f_1(1420)$?
- $a_1(1420)$ and $f_1(1420)$ could be KK π molecules
- f₁(1420) observed in pp → K⁰K⁻π⁺π⁺π⁻

PANDA (MSV): 800 M / d produced 4π events

Compass, Phys. Rev. Lett. 115, 082001 (2015)

Two Years Early Physics Proposal

 Scrutiny Group merged proposals made by the various PWGs to a two year early physics proposal

Light meson spectroscopy:

- 30 days at 1.64 GeV/c
 - spectroscopy for states below 2.3 GeV/c²
 - unprecedented data samples
 - can address $a_1(1420)$
- 7 days at 3.75 GeV/c
 - investigate Y(2175) and ΦΦ resonances

Plans

- Full simulation studies
 - Y(2175) → Φππ in $\bar{p}p$ → Y(2175)ππ, Y(2175)π⁰
 - light glueball G→ΦΦ, K \overline{K} , K \overline{K} π in \overline{p} p → Gπ⁰, Gη, Gππ
 - energy scan p̄p → ΦΦ
 - $-a_1(1420) \rightarrow 3\pi \text{ in } \bar{p}p \rightarrow 4\pi, 5\pi$

increasing complexity

https://panda-wiki.gsi.de/foswiki/bin/view/PhysicsCmt/PhysicsAnalysisActivities

- Include realistic backgrounds
- Address feasibility of partial wave analyses

Summary

- Light meson spectroscopy at PANDA
 - large production cross sections
 - gluon-rich processes (glueballs, hybrids)
- Feasibility studies
 - full simulation with realistic background estimations and
 - addressing partial wave analyses
 - prioritized list of channels
- Limited manpower
 - like in Charmonium / Charmonium-exotics PWGs
 - combine efforts as much as possible (e.g. data production, PWA)