

Чii

SRC are pairs of nucleon that are close together in the nucleus (wave functions overlap)

=> Momentum space: pairs with <u>high relative</u> <u>momentum and low c.m. momentum</u> compared to the Fermi momentum (k_F)

Probing SRCs

Breakup the pair => Detect both nucleons => Reconstruct 'initial' state

Breakup the pair => Detect both nucleons => Reconstruct 'initial' state

Experimental signature:

High initial-momentum reconstructed proton back-to-back to a recoil neutron or proton

- Formulate the physics motivation (~Done).
- Develop an SRC A(p,2pN) even generator, including HADES resolutions and acceptance effects (Done).
- Calculate expected event rate using event generator and benchmark against 3.5 GeV p+Nb data (Done).
- Propose a realistic design for a recoil proton / neutron detector (Work in progress).
- Propose realistic trigger, targets etc. <u>that are</u> <u>consistent with the rest of the proton beam</u> <u>program</u>! (Work in progress).
- Get collaboration support and go to the PAC $\ensuremath{\textcircled{\odot}}$

experiment	pp pairs	np pairs	nn pairs
EVA/BNL	-	18	-
E01-015/JLab	263	179	-
E07-006/JLab	50	223	-
CLAS/JLab	1533	-	-
Total	<2000	<450	0

=> Need 1-2 orders of magnitude improvement to address next generation BIG questions

SRC@HADES: Physics Highlights

- Onset of SRC dominance. ('Migdal Jump' in nuclei)
- Repulsive core of NN interaction. (Transition from np-dominance)
- SRCs in asymmetric nuclei. (number of pairs and c.m. motion in nuclei)
- **3N-SRC**.

+ FAIR feasibility

(inverse kinematics)

Experimental Setup

• Trigger for (p,2p) events:

- <u>Ideally</u>: keep all events with two hits in opposite sectors of the TOF.
- <u>IF we can't do it</u>: keep all events with two hits in opposite sectors of the TOF in a time window that match > 1.5 GeV/c protons (using diamond start detector).
- IF we also can't do it: pre-scale ☺

• Target:

- Multi-foil like HADES did in the past
- Prefer to 'split' the foils to different nuclei, e.g. C, Ca, Nb, ...

Rates (4 GeV, 5x10⁷ protons/sec beam):

np pairs Triple coincidence ¹²C(p,2pn)

~50 events/hour

=> 30 days (50% beam availability) 50,000 events total

pp pairs Triple coincidence ¹²C(p,ppp)

~20 events/hour

=> 30 days (50% beam availability) 20,000 events total

Preliminary !

Reminder – we want to run ~4 target nuclei so the rate per-target will be x4 less.

- Neutron Detector:
 - George moved to GSI and is working on the design.
 Comments are welcome!
 - Readout electronics still open question. Input from HADES experts is crucial.
- Si proton detector: Looking for collaborators that can lead its development.
- Final Goal: First proposal draft ready for the collaboration review early 2017.