Injection facility of NICA

HILAC & LU-20 – two injectors for NICA

Beams of polarized protons and deutrons $p\uparrow \mu d\uparrow$ and light ions will be accelerated by LU-20, then by Nuclotron Heavy ions : HILAC + Booster + Nuclotron

Injection Facility arrangement

TOPICS

- Commissioning of new injector HILAC.
- Upgrade of Alvarez based injector that's already done.
- Alvarez based injector upgrade that is coming up.

Commissioning of new injector HILAC.

СЯФ РАН, 12-15 апреля, ОИЯИ, г.Дубна

Heavy Ions Linear accelerator

NICA Injector for Au³¹⁺ 3.2 MeV/u to Booster&Nuclotron

In collaboration with "BEVATECH OHG"(Germany), JINR, INR(Russia).

Tasks

- 1. Assemble HILAC itself including MEBT and intertank section.
- 2. Install vacuum system. (JINR, "Bevatech")
- **3.** Install RF amplifiers and fiders. (JINR, "TOMCO")
- 4. Development and production 10 pulsed power supplies for doublets, triplets and solenoids. (JINR, INR)
- 5. Development and production Low Energy Beam Transfer channel (LEBT) for matching beam from ion source to RFQ including pulse transformer. (JINR)
- 6. Timing system. (JINR)
- 7. Low Level RF control system (LLRF) ("Bevatech", JINR, ITEP)
- 8. Software. (JINR, ITEP)
- 9. Beam analysis at the HILAC output.

RF AMPLIFIERS

A.Buteko, K.Levterov, V. Kobets

Three amplifiers,100MHz, 10Hz rate: 140 kW, 340 kW, 340 kW

RFQ RF conditioning: 120 kW in RFQ section

LEBT Low Energy Beam Transfer Ein=3 keV/u Eout=17 keV/u

JINR, RUSSIA LIS + LEBT Low Energy Beam Transfer Eout=17 keV/u

BEVATECH, GERMANY

4-rod RFQ Ein= 17 keV/u Eout= 300 keV/u

BEVATECH, GERMANY Buncher+IH1+IH2

Ein=300 keV/u Eout=3.2 MeV/u

DTL structure «KONUS» (KOmbinierte NUII grad Struktur) – combined structure with zero synchronus phase.

Analyzing magnet at the HILAC output

JINR, RUSSIA

Pulsed power supply for doublets, triplets, and solenoids up to 1.2 kA, t=3 ms

Experimental setup S- steerer, CT-current transformer, PP-phase probe, D- doublet, T- triplet, FC- Faraday cup

Experimental Eout= 3.2 MeV

Experimentally found energy ≈ 3.2 MeV

C3+ ions from Laser Ion Source

Phase probe's signals

Current transformer's and Faraday cup signals

HILAC commissioning team

11111

Krion-6T ESIS

Theoretical и achieved parameter:

1) Magnetic field up to B= 6.0 T, (5.0 T, 2015) 2) Energy of electron string $E_e \leq 25 \text{keV}$ ($E_e \leq 12 \text{keV}$, 2015)

Working element/charge state	Au³¹⁺ (Au⁵¹⁺)
Expected ion int. <i>N_i</i>	1÷4 x 10 ⁹ ppp Au ³¹⁺ (5x10 ⁸ , 2015) (1÷3 x 10 ⁸ ppp for Tm ⁴¹⁺ ~Au ⁵¹⁺)
Repetition rate	50 Hz (for Au³¹⁺⁾ 50÷100 Hz, 2015 3÷5 Hz for Tm ⁴¹⁺ -Au ⁵¹⁺ , 2015
Extraction time form the ESIS	$8 \div 30 \ge 10^{-6} = s$
RMS emittance	$\frac{0.6 \ \pi \ \text{mm mrad}}{(\text{for 8 x } 10^{-6} \text{ s extraction time});}$ $\frac{0.15 \ \pi \ \text{mm mrad}}{(\text{for 30 x } 10^{-6} \text{ s extraction time}).}$
Peak current in pulse	up to 10 mA

Plans:

- 1) Improvement of internal Au injection.
- 2) Experiments in Au production in в magnetic field upto 6T

WHAT WE HAVE TO DO

- Measurement of transmission.
- Analysis of the beam from ESIS KRION 6T at the HILAC output.
- To build High Energy Beam Transport channel (HEBT).
- Beam analysis at the HEBT output.
- Researching for the modes of operation.

ALVAREZ BASED INJECTOR UPGRADE

Source of Polarised Ions (SPIon)

V. V. Fimushkin, A. S. Belov

JINR + INR

The main goal is the beams of high intensity (d+,p+) at the Accelerating Facility of LHEP JINR up to <u>**10**</u>¹⁰ <u>**p/pulse**</u>

25 kW is needed

Forinjector for Alvarez LU-20 before upgrade

Forinjector for ALVAREZ LU-20

Before upgrade

Ion Source Pmax = 5 kW

HV TERMINAL

U HV terminal ≥ 300 kV

625 kV- protons, 312.5 kV - Z/A=1/2,

470 kV - Z/A=1/3.

LINAC

After upgrade

Ion Source Pmax = 35 kW

HV TERMINAL

U HV terminal ≤ 100 kV

45 kV- protons, 62 kV - Z/A=1/2,

103 kV - Z/A=1/3.

Isolation transformer, 160 kV, 35 kWA

Upgraded forinjector for Alvarez LU-20.

Acceleration in ITEP RFQ

4-vane RFQ Ein= 31 keV/u Eout=156 keV/u

Upgraded forinjector, RFQ, SPIon.

Upgraded forinjector, SPIon.

^{*}Alvarez based injector upgrade that is coming up.

Joint collaboration of JINR, NRNU, MEPhl, INP, BSU, PTI NASB, BSUIR, SPMRC NASB.

СЯФ РАН, 12-15 апреля, ОИЯИ, г.Дубна

Cavities group	1	2	3	4
β _s	0.07	0.141	0.225	0.314
Win, MeV	1.0	4.1	17.2	34.3
β _{in}	0.046	0.093	0.189	0.263
W _{out} , MeV	4.1	17.2	34.3	50
βout	0.093	0.189	0.263	0.314
T, %	17.5	17.5	17.5	17.5
K _I , %	100	100	100	100
f, MHz	162	162	324	324
Ngap	2	4	4	4
φ, deg	-20	-20	-20	-20
L _{res} , m	0.13	0.26	0.416	0.58
<i>E</i> , MV/m	3.08	10	12	11.21
U _{res} , MV	0.4	2.6	5	6.5
В, Т	1.6	2	2.6	2.8
<i>L_{sol}</i> , m	0.2	0.2	0.2	0.2
<i>L_{gap},</i> т	0.1	0.1	0.1	0.1
L _{per} , m	0.53	0.66	0.816	0.98
N _{per}	8	6	4	4
<i>L</i> , m	4.24	3.96	3.264	3.92

Parameters of SC linac

Protons up to 25 MeV (50 Mev after upgrade), Light ions up to 7.5 MeV/u.

Electrodynamics models of QWR cavities were designed for β =0.07, 0.105, 0.12 (and 0.150 as reserve) and resonant frequency of *f*=162 MHz. As an example, optimal QWR characteristics for *f*=162 MHz and β =0.07 are the following: cavity height 480 mm, central conductor length 439 mm, central conductor radius 18 mm, cavity internal radius 67 mm, central drift tube length 118 mm, gaps length 24 mm

THANKS

