Stochastic cooling for NICA collider

Ivan Gorelyshev, LHEP, JINR

Perspectives for Joint Science and Academic Training at FAIR and NICA

NICA stochastic cooling system

Stochastic cooling is microwave broadband system with feedback via the beam

- High sensitivity pickup at cryogenic temperatures
- Precise processing & delay: range 32ns, 1ps accuracy
- Broadband high power amplifier
- Large impedance kicker dissipates high power inside chamber at high vacuum

3 channels for each ring: longitudinal + 2 transverse 6 Pickups + 4 Kickers in total

one of the crucial systems of the project

NICA collider

Low intensity: Beam accumulation Short bunch formation

Luminosity preservation: IBS counteraction

NICA collider				
C, m	503			
E, GeV/u	1-4,5			
lons	p,d,heavy			
W, GHz	2-4			
P, Watt	500/channel			
Cooling method	Filter, Palmer			

HESR(FAIR)

Low intensity: Beam accumulation Luminosity preservation: Suppression of heating from target

HESR				
C, m	574			
E, GeV/u	1,5-15			
lons	p-bar,heavy			
W, GHz	2-4			
Р	500/tank			
Cooling method	Filter			

Both NICA & HESR have barrier bucket beam accumulation system

Beam stacking with Barrier Bucket and cooling

Stochastic Cooling experiment at Nuclotron, JINR

Circumference, m	251.5
Ions	up to A=142
Energy, GeV	3.5
Rev.frequency, MHz	1.2
Vacuum, Torr	10-9
Intensity	$10^{10}(d) - 10^{9}(C)$
Ring slippage factor	0,0322
dp/p	10-4

Band 2 – 4 GHz Output power up to 60 W

Goals:

Investigation of different cooling methods Test of equipment for the NICA collider

Beam parameter measurement(PU) and control(KK)

NICA collider S	Stoch. cooling		HESR Stoc	h. cooling
W, GHz	2-4		W, GHz	2-4
Aperture, mm	90		Aperture	90 mm
P, Watt	500/channel		P, Watt	500/tank
Cooling method	Filter, Palmer		Cooling method	Filter
16 rings	Slo ma D	ot-coupler structures, anufactured at IKP FZJ esigned by R. Stassen		4
Tourie	La La	rger impedance		

Universal for 3 degrees of freedom

8 electrodes

2

3

8

2009-2011 Cryogenics and vacuum tank were designed, manufactured and tested in collaboration with FZJ

Nuclotron SC: Optical notch-filter and delay

March 2013

First Nuclotron stochastic cooling of coasting D beam

December 2013 Stochastic cooling of the carbon beam 2.5GeV/u

Ring-slot-coupler structure(FZJ) was successfully tested as a kicker at Nuclotron, JINR

Equipment requirements

Bandwidth	2 – 4 GHz
Aperture	90 mm
Vacuum requirements for pick-up and kicker vessels	10 ⁻¹⁰ -10 ⁻¹¹ Torr
Number of pickups	6
Number of basic structures per pickup (basic structure = 16 rings)	2
Pickup operational temperature	15 – 20 K
Number of kickers	4
Number of basic structures per kicker	4
Kicker operational temperature	300 K
Total RF power of amplifiers	3 kW
Number of separated 80 W modules (including reserve)	45

Conclusion

- Stochastic cooling is one of the crucial elements of NICA & HESR
- Test stochastic cooling channel was put into operation at Nuclotron, JINR in cooperation with FZJ
- System components were developed and tested in cooperation with GSI,FZJ,CERN,FNAL
- FZJ Ring-slot-coupler was successfully implemented as a kicker for the first time at Nuclotron, JINR
- The basic structure was earlier developed in FZJ for HESR, for the NICA SCS no new design needed. The same structures are under fabrication in FZJ for HESR SCS and the technology satisfies to the NICA requirements. Therefore preferable provider of the SCS elements is FZJ.

