

Dr. Stanislav Pakuliak **UC Director**

E-mail: pakuliak@jinr.ru

Perspectives for Joint Science and Academic Training at FAIR and NICA

16.11.2016

PROGRAMMES for students & postgraduates

- Bachelor's, Master's & PhD theses at JINR
- International student practices
- Summer student programme
- Hands-on workshops for future engineers
- Virtual laboratory of nuclear fission
- Training course in CATIA-GDML Geometry Builder

PROGRAMMES for school students

- Interschool physics and mathematics open classroom
- Centre of additional education PRIMER
- 'NICA Mega-science project' demo lesson

PROGRAMMES for physics teachers

- International scientific schools
 at JINR and CERN
- Videoconferences with schools
 from JINR Member states

Outreach PROGRAMMES

- Festivals of science
- Days of physics in Dubna
- Visits to the JINR labs
- 3D tours around JINR basic facilities
- Popular lectures on modern science
- Renovated JINR museum

Brief history of JINR educational programmes

- 1956 JINR is established
- 1961 Moscow State University branch is founded in Dubna (D.I. Blokhintsev, V.I. Veksler and S.N. Vernov)
- 1991 JINR University Centre is established
- **1995** JINR PhD programme is launched
- 1994 Dubna International University (DIU) is founded
- **2003** Education programme in physics is started at DIU
- **2004** International Summer Practices are started at JINR
- **2014** Summer Student Programme at JINR is launched
- 2014 Scientific-engineering group at JINR UC is established

JINR fields of theoretical and experimental research

- Theoretical physics
- Particle physics
- Relativistic nuclear physics
- Heavy ion physics
- Low and intermediate energy physics
- Nuclear neutron physics
- Condensed matter physics
- Radiation biology and radiobiological investigation
- Information technologies and modern computational techniques

Attracting youth to science

Start your career at JINR

Why?

- World-class scientific research
- Wide range of research areas
- Qualified supervision
- Fruitful contacts
- International collaboration
- Variety of training programmes

Bachelor's, Master's & PhD theses at JINR

JINR has the departments of the following universities

We enable students and postgraduates from the Member States Universities to prepare their qualifying papers at JINR

International 3-week student practices

Started in **2004** Total number of participants – **1267**

Practice participants

- build a picture of the JINR fields of research
- can work at the basic facilities of the Institute under supervision of the leading experts
- have an opportunity to choose a future research supervisor
- make fruitful contacts
- enjoy the Russian culture

1 stage, May _{Egypt}

2 stage, July Bulgaria, Poland, Romania, Slovakia, Czech republic, Azerbaijan

3 stage, September RSA, Belarus, Cuba, Serbia

Summer student programme

Started in **2014** Total number of participants – **80**

- Competitive selection
- Longer term (6-8 weeks)
- Advanced level of projects

students.jinr.ru

Application procedure for the JINR SSP-2017 starts on January, 16

Hands-on workshop for future engineers

- Basics of nuclear physics
- Radiation protection and safety
- Particle detectors
- Vacuum technology
- RF technology
- Magnets
- Electronics and automation

Main directions:

- Development of training programmes
- Acquisition of practical skills
- Enhanced training

Linac-200 at JINR

100 MeV electrons now240 MeV by this Christmas800 MeV by 2020

Current in bunch – 15 µA Bunch width – 2 µs Bunch frequency – 10-250 Hz Focal spot ~ 1 mm can be defocused up to 20 mm 'Training' beam – 22 MeV

Future plans: Series of training courses at Linac-200

- Accelerator and beamline operation
- Beam diagnostics
- Magnet optics
- Detector response to the electron beam and gamma rays

Key ideas:

- Thematical blocks lasting 1-3 weeks
- Online booking available
- Creative unsupervised work
 encouraged
- Discussion sessions with the qualified scientists and engineers
- Technical assistance provided
- Use of e-Learning techniques
- All the materials available both in English and Russian

Perspectives:

- Synchrotron radiation (provided the Linac energy raises up to 800 MeV)
- Radiation processing technology and materials science, radiobiology
- 'Toy' physics experiments: study of giant dipole resonance, electron scattering in atomic nuclei, nuclear form-factors, etc.

Virtual Laboratory of Nuclear Fission

[1] [2]

• Theory

- Experiment
- Electronics and Data acquisition system
- Data analysis

Virtual and online laboratory research

Virtual Laboratory of Nuclear Fission

Light Ion Spectrometer (LIS)

The study of the spectrum of fission fragments

There are the structural elements of the experimental setup. Assemble the experimental setup out of structural elements and analyze the obtained data.

Analyze the spectrum chart.

Write down your results into the logbook.

Training course in CATIA-GDML Geometry Builder

International scientific schools for physics teachers at JINR and CERN

Basic components:

- Visits to experimental facilities;
- Lectures;
- Hands-on activities;
- Meetings with research physicists;
- Communication with colleagues from different regions.

What do we want to achieve?

- Raise and maintain the interest of students in modern science.
- Motivate students to study science and engineering at universities.
- Prepare the future generation of scientists and engineers.
- Show that Science is alive!

Schools at JINR

Bringing Science closer to School

Schools at CERN

JINR University Centre together with CERN hold videoconferences with schools from JINR Member States

Interschool physics and mathematics open classroom

Applied physics informatics & mathematics

Natural science

Robototronics

Centre of additional education 'PRIMER'

Festivals of science

- Outreach
- Communication with wide audience

Days of physics in Dubna

ОИЯИ В ЦИФРАХ

ДУБНА 2016

EPE

YEHA '201

Days of physics in Dubna

6

Ħ

N/

m

• 201

60 ME

Nuclotron – Superconducting heavy ion synchrotron	
Circumference, m	251.5
Ions	from p up to A>100
Maximum magnetic rigidity, T m	43
Maximum energy	12 GeV for protons, 6 GeV/u for A/Z = 1/2
Intensity, particles per pulse	from 10 ⁵ (heavy ions) up to 5 10 ¹⁰ (d)
Magnetic field ramp, T/s	up to 2
Slow extraction spill duration, s	up to 10
Alvarez-typ	e DTL LU-20
Length of the cavity, m	14.5
Maximum fore-injector voltage, kV	700
Output proton energy, MeV	20
$\begin{array}{l} Output \mbox{ ion } (Z/A \geq 1/3) \mbox{ energy}, \\ MeV/u \end{array}$	5
Peak current, mA	10
RF frequency, MHz	150

3D tours around JINR basic facilities

uc.jinr.ru, 'JINR basic facilities' section

JINR: Nuclotron - Internal target - 2014

Parameters

Visits to the JINR labs

for students and teachers

A, JINR

'NICA Mega-science project' demo lesson

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

КОЛЛАЙДЕР NICA

Popular lectures on modern science

- Modern science in simple words
- Entertaining particle physics for school students
- Lab work using real experimental data

Renovated JINR museum

Thank you for your attention