

Scope of the Meeting

Peter Wintz (IKP, FZ Jülich)

STT RO WShop | Krakow | Jan-30/31 2017

Aim of the Meeting

- Definition of the process how to decide on the final electronic readout system for the PANDA-STT: two alternative options (ADC or TDC w/ time-ovr-thr)
- Find group-inside full agreement on the process: "transparent" decision
- Decide whether informal agreement sufficient or we need memorandum
- Set up project control towards the decision
- Main decision criteria: readiness of readout system for STT ("pre-series")
- Clear definition of criteria and deliverables needed
 - Test systems ("pre-series") & measurements, system boundaries, on-/offline SW, ...
- Organisation of WPs, workflow plan, contact persons & timelines
- After decision: start with final production stage
- Involvement of PANDA by Tech. Coordinator (Lars, Tassos)
- Decide on regular meetings and reporting

Readout Decision & Implications

- Critical discussion of the two system designs inside the group wanted
- Identify weak, open points and solutions for both
- Consider all aspects: performances, complexity, MPs & financials (performances, e.g. resolutions and efficiencies, complexity of HW & SW, maintenance, robustness, e.g. noise, pickup, failure-safe, man power, financials within given STT budget, ...
- Integration of STT readout system in PANDA
 - Consider connection to PANDA-DAQ (in-/outputs), but PANDA-DAQ not avail.
 - Mechanical integration (front-end, cable routing, maintenance, humidity&temp.,..)
 - Main input for experiment (software) trigger: robust & highest hit efficiency
 - Continuous data stream with (some) pattern recognition (t0-determination)
 - Robust & failure-safe operation required: no hang-up, fast, ~100% efficiency, ..
 - No instant access to PANDA-experiment hall during beam time
- Involvement of PANDA TechCoord. during the whole decision process
- Reports in specific TechBoard session(s) for mech. integration, install., DAQ

TDR Approval & Criteria by FAIR-ECE

- Reminder: STT TDR evaluation by FAIR-ECE panel (experts committee exp.)
 - dE/dx results by Amp/FADC (240 MHz) prototype, remind: TPC/STT eval.
 - Tech. specs for ASIC/TRB system
- Full TDR approval by experts in 2013, but: "since electronics R&D not as advanced as mechanics, following both alternative electronic readout options is a wise approach"
- Decision on final readout due since 2013
- Panel gave clear recommendations for how to proceed with STT production
 - Final system prototype or spare module to conduct a production readiness review
 - Expose electronic chain to full dynamic range of pulse heights by in-beam tests
 - Failure studies!, ..
 - Experts offered availability for advice at any stage of the STT production
- We will comply all recommendations and remarks made by the experts
 (W. Riegler & L. Musa (CERN), C. Meyer (CarnMell U), J. Vavra (SLAC), R. Frühwirth (HEP Vienna), T. Hemmick (Stony Brook), A. Pellegrino (CERN), M.Capeans (CERN))

Decision Process & Timelines

- Current meeting to start the readout decision process
- Organisation of the process
- Define criteria & timelines
- Agreement on the process
- Since 2013 sharpening of both readout system designs
- Stage reached to set up pre-series readout systems & in-beam tests for both

Timelines: 2018(9) - 2021 for final production of readout system, pre-testing ...

- Q2/2018: readout decision and part of STT pre-series test (FAIR-M8)
- Q1/2018: beam time planned, request submission due in Apr/May 2017
- End-2021: PANDA-STT site acceptance test (FAIR-M9)
- 2022: STT system ready for installation at FAIR
- Optional: STT system pre-mounting (Jül?), due to limited hall space at FAIR

Structure of the Meeting

- Monday & early Tuesday: various status reports
 - Group activities, room for (critical) discussions
 - Propose Q&A during (longer) presentations
- Tuesday: devoted to decision process (intros & round-table discussions)
 - Criteria & deliverables
 - Test systems & measurements
 - Analysis, results & comparability, extrapolation to PANDA-STT
 - PANDA-DAQ integration
 - Organisation of the decision process
 - Further meetings and reporting
 - Timelines

AOT ? Anything else ??

PANDA – Straw Tube Tracker (STT)

- 4224 straw tubes in 2 split semi-barrels
 - 27µm thin Al-Mylar film, 10 mm diameter, 1400 mm length
- 23-27 radial layers in 6 hexagonal sectors
 - 15-19 axial layers (green) in beam direction
 - 4 stereo double-layers: ±3° skew angle (blue/red)
- Ar/CO₂ (10%) @ 2 bar, 5×10⁴ gas gain
- X/X₀ ~ 1.25% (~ ²/₃ tube, ¹/₃ gas, ¹/₈ STT mantle)
- Time & charge readout for PID by dE/dx (p,K, π <1 GeV/c)
 - σ_r ~150µm (σ_z~3mm), dE/dx ~10%
- Momentum resolution ~ 1-2% (B=2T)
- Continuous readout & RT tracking
- ~17 GB/s (5 bytes for ch, time, charge)

Straw components

PANDA-STT Electronic Readout

- Specific energy-loss (dE/dx) readout together with high spatial resolution is a non-standard task for straw detectors, in particular at PANDA
- STT with readout of drift time and charge for PID (dE/dx)
- FE-ASIC / TRB3 (time & time-over-threshold)

PASTTREC-ASIC FE-board (by AGH & JU Krakow)

Amp/ADC - FPGA (pulse shape sampling)

Testboard with ADC (LTM9011-14) and FPGA readout (ZEA-2/FZJ)

Report on Beam Tests in 2016

- 2×1 week: protons@ 3, 1, 0.75, 0.55 GeV/c, deuterons@ 1.5, 0.75, 0.6 GeV/c
- Ideal to test proton/kaon separation at PANDA < 1 GeV/c
- Covered dE/dx range: ~ 5 50 keV/cm (Ar/CO₂ @ 2bar)
- Both readouts competitive: dE/dx separation demonstrated for both (see below)
- Analysis ongoing, further improvements possible

PANDA Event Simulation

Hitstream display: 15 GeV/c DPM, 50 ns mean time,

STT standalone pattern reco and track recognition

DPM Benchmark: Realistic event rate and structure, continuous operation

Dual Parton Model (DPM): Standard pp background generator

Thank you all

and

looking forward to

a

fruitful meeting

New Beam Area and STT Testsystems

Mitglied der Helm holtz-Gemeinschaft